M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学 算法 计算机图形学(图像) 人工智能
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhihuan Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123489-123489 被引量:4
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
庾傀斗发布了新的文献求助10
刚刚
福娃发布了新的文献求助10
1秒前
zyp完成签到,获得积分10
1秒前
futing发布了新的文献求助10
1秒前
掺香关注了科研通微信公众号
1秒前
微斯人发布了新的文献求助10
2秒前
金木研发布了新的文献求助10
2秒前
研友_8KX15L完成签到,获得积分10
2秒前
Kail完成签到,获得积分10
3秒前
paipai完成签到 ,获得积分10
3秒前
Owen应助掌心化雪采纳,获得10
3秒前
4秒前
4秒前
liberty发布了新的文献求助10
4秒前
慕青应助Tobeyleonard采纳,获得10
4秒前
隐形的沛白完成签到 ,获得积分10
5秒前
桐桐发布了新的文献求助40
5秒前
5秒前
最爱辣子鸡完成签到,获得积分10
5秒前
Doris完成签到,获得积分20
5秒前
feishxixi完成签到,获得积分10
5秒前
5秒前
6秒前
Akim应助dudu采纳,获得10
6秒前
无情落雁完成签到,获得积分10
7秒前
7秒前
赘婿应助研友_Zzrx6Z采纳,获得20
7秒前
9秒前
金木研完成签到,获得积分20
9秒前
无鞅发布了新的文献求助10
9秒前
单纯的冬灵完成签到 ,获得积分10
10秒前
曾经二娘发布了新的文献求助10
10秒前
章早立完成签到,获得积分10
11秒前
比奇堡派大星完成签到,获得积分10
11秒前
12秒前
12秒前
ysergling完成签到,获得积分10
12秒前
啊凡发布了新的文献求助10
12秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919