亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhaisehng Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123489-123489 被引量:17
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助归尘采纳,获得10
2秒前
ding应助归尘采纳,获得10
2秒前
汉堡包应助归尘采纳,获得10
2秒前
充电宝应助归尘采纳,获得10
2秒前
牛牛牛应助归尘采纳,获得20
2秒前
NexusExplorer应助归尘采纳,获得10
2秒前
卡拉蜜儿应助归尘采纳,获得30
2秒前
打打应助归尘采纳,获得10
2秒前
YH应助归尘采纳,获得50
2秒前
领导范儿应助归尘采纳,获得30
2秒前
研友_VZG7GZ应助葛力采纳,获得10
2秒前
半城微凉发布了新的文献求助10
5秒前
可爱的函函应助归尘采纳,获得10
11秒前
Akim应助归尘采纳,获得10
11秒前
上官若男应助归尘采纳,获得10
11秒前
华仔应助归尘采纳,获得10
11秒前
领导范儿应助归尘采纳,获得10
11秒前
共享精神应助归尘采纳,获得10
11秒前
Owen应助归尘采纳,获得10
11秒前
ding应助归尘采纳,获得100
11秒前
Magali应助归尘采纳,获得30
11秒前
完美世界应助归尘采纳,获得30
11秒前
量子星尘发布了新的文献求助10
14秒前
深情安青应助CMM采纳,获得10
23秒前
Maria完成签到,获得积分10
23秒前
45秒前
年轻真好啊完成签到,获得积分10
49秒前
xx关闭了xx文献求助
54秒前
56秒前
CMM完成签到,获得积分20
57秒前
CMM发布了新的文献求助10
1分钟前
两袖清风完成签到 ,获得积分10
1分钟前
风华正茂发布了新的文献求助30
1分钟前
呼啦呼啦完成签到 ,获得积分10
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056