亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhaisehng Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123489-123489 被引量:23
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
8秒前
Candices发布了新的文献求助10
14秒前
张晓祁完成签到,获得积分10
14秒前
朴素的山蝶完成签到 ,获得积分10
18秒前
23秒前
英俊的铭应助自觉的人龙采纳,获得10
23秒前
24秒前
yueying完成签到,获得积分10
25秒前
27秒前
27秒前
kentonchow应助微笑睫毛采纳,获得10
27秒前
28秒前
28秒前
Celeste发布了新的文献求助10
29秒前
xu完成签到,获得积分10
30秒前
kentonchow应助小解采纳,获得10
30秒前
Shawn发布了新的文献求助10
32秒前
ho应助科研通管家采纳,获得10
35秒前
ho应助科研通管家采纳,获得10
35秒前
35秒前
Celeste发布了新的文献求助10
1分钟前
Akim应助Candices采纳,获得10
1分钟前
1分钟前
Pikaluo发布了新的文献求助10
1分钟前
今后应助Celeste采纳,获得10
1分钟前
Candices完成签到,获得积分10
1分钟前
细心八宝粥完成签到 ,获得积分10
1分钟前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
lllllllllzx完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助200
1分钟前
Pikaluo完成签到,获得积分10
1分钟前
希望天下0贩的0应助tt采纳,获得10
1分钟前
1分钟前
1分钟前
顺颂时祺发布了新的文献求助10
1分钟前
1分钟前
2分钟前
FG发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827