M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhaisehng Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123489-123489 被引量:23
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baolipao完成签到,获得积分10
1秒前
学材料的向日葵完成签到,获得积分20
1秒前
surge完成签到,获得积分10
1秒前
天天快乐应助Imstemcell采纳,获得10
2秒前
Lucas应助谢涛采纳,获得10
2秒前
3秒前
angel完成签到,获得积分10
3秒前
3秒前
所所应助细心的语蓉采纳,获得30
3秒前
科研通AI2S应助arrebol采纳,获得10
4秒前
半生半熟完成签到,获得积分10
4秒前
4秒前
柯克发布了新的文献求助30
4秒前
勤奋以蓝发布了新的文献求助10
5秒前
5秒前
王猛发布了新的文献求助30
5秒前
6秒前
6秒前
6秒前
椒盐丸子完成签到,获得积分10
6秒前
6秒前
啊哈哈完成签到,获得积分20
7秒前
lx1a0发布了新的文献求助10
7秒前
7秒前
茶叶盒关注了科研通微信公众号
7秒前
__发布了新的文献求助10
8秒前
一颗小花生完成签到,获得积分10
8秒前
9秒前
得分发布了新的文献求助30
9秒前
10秒前
wenbo发布了新的文献求助10
10秒前
11秒前
litchi关注了科研通微信公众号
11秒前
爱科研发布了新的文献求助10
11秒前
从容飞阳发布了新的文献求助10
12秒前
viv完成签到,获得积分20
12秒前
胡浮浮发布了新的文献求助10
13秒前
少吃点完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
狂野傲白完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060