M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhaisehng Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123489-123489 被引量:23
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助xxyh采纳,获得10
4秒前
活泼小笼包完成签到,获得积分10
4秒前
彭凯发布了新的文献求助10
5秒前
爆米花应助开朗的觅海采纳,获得10
5秒前
郭立欣完成签到 ,获得积分10
7秒前
小马甲应助聪慧振家采纳,获得10
7秒前
DJ完成签到,获得积分10
8秒前
CodeCraft应助迷路千秋采纳,获得30
8秒前
bkagyin应助aliena采纳,获得10
16秒前
无花果应助ayuanpf采纳,获得10
22秒前
李栖迟完成签到 ,获得积分10
23秒前
派克kkk完成签到,获得积分20
24秒前
王小雨完成签到 ,获得积分10
26秒前
35秒前
勤恳雅莉应助活泼山雁采纳,获得10
35秒前
迷路千秋发布了新的文献求助30
42秒前
46秒前
47秒前
YJ发布了新的文献求助10
51秒前
ffddsdc发布了新的文献求助10
51秒前
53秒前
Hello应助李昕123采纳,获得20
54秒前
伶俐的颤发布了新的文献求助10
55秒前
qiuxu完成签到,获得积分10
56秒前
56秒前
yuan完成签到,获得积分10
57秒前
蓝蓝完成签到,获得积分20
57秒前
59秒前
FrozNineTivus完成签到,获得积分10
1分钟前
ffddsdc完成签到,获得积分10
1分钟前
ayuanpf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助YJ采纳,获得10
1分钟前
Estrella完成签到 ,获得积分10
1分钟前
大模型应助年轻的大叔采纳,获得10
1分钟前
1分钟前
1分钟前
mai发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558160
求助须知:如何正确求助?哪些是违规求助? 4643117
关于积分的说明 14670585
捐赠科研通 4584558
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459713