M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhaisehng Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123489-123489 被引量:17
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山野完成签到 ,获得积分10
刚刚
安眠完成签到 ,获得积分10
1秒前
2秒前
倔驴发布了新的文献求助10
3秒前
eaglefish发布了新的文献求助10
3秒前
大个应助冷静白亦采纳,获得10
4秒前
XiangJi完成签到,获得积分20
5秒前
归海芳发布了新的文献求助10
5秒前
坚定的中蓝完成签到,获得积分10
5秒前
噗噗完成签到,获得积分10
7秒前
7秒前
无际的星空下完成签到,获得积分10
8秒前
9秒前
ewmmel完成签到 ,获得积分10
9秒前
ww发布了新的文献求助10
10秒前
墨菲特发布了新的文献求助10
10秒前
科研顺利发布了新的文献求助10
10秒前
wu发布了新的文献求助10
10秒前
13秒前
葛文秀完成签到,获得积分10
13秒前
Hh梁发布了新的文献求助10
13秒前
14秒前
Hayden_peng发布了新的文献求助10
16秒前
16秒前
快乐慕灵完成签到,获得积分10
19秒前
现实的白猫完成签到 ,获得积分10
19秒前
科研通AI5应助zoe采纳,获得30
20秒前
完美世界应助zoe采纳,获得50
20秒前
史前巨怪完成签到,获得积分10
20秒前
科研通AI5应助科研顺利采纳,获得10
22秒前
科研通AI2S应助瞿寒采纳,获得10
24秒前
Hayden_peng完成签到,获得积分10
25秒前
28秒前
orixero应助123采纳,获得10
32秒前
立里发布了新的文献求助10
33秒前
35秒前
hooke发布了新的文献求助30
35秒前
38秒前
KY Mr.WANG完成签到,获得积分0
38秒前
ding应助奋斗的俊驰采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545926
求助须知:如何正确求助?哪些是违规求助? 3977396
关于积分的说明 12316211
捐赠科研通 3645739
什么是DOI,文献DOI怎么找? 2007732
邀请新用户注册赠送积分活动 1043308
科研通“疑难数据库(出版商)”最低求助积分说明 932103