已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection

计算机科学
作者
Guanbo Wang,Haiyan Li,Peng Li,Xun Lang,Yanling Feng,Zhaisehng Ding,Shidong Xie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123489-123489 被引量:23
标识
DOI:10.1016/j.eswa.2024.123489
摘要

Forest wildfires are one of the most catastrophic natural disasters, which poses a severe threat to both the ecosystem and human life. Therefore, it is imperative to implement technology to prevent and control forest wildfires. The combination of unmanned aerial vehicles (UAVs) and object detection algorithms provides a quick and accurate method to monitor large-scale forest areas. Nevertheless, most available datasets on forest wildfires comprise single-mode ground-fixed-angle pictures that inadequately represent the intricate terrain, high humidity, low visibility meteorological conditions, and multiscale light flux densities of forest wildfires. To address these limitations, we developed the Multiple scenarios, Multiple weather conditions, Multiple lighting levels and Multiple wildfire objects Synthetic Forest Wildfire Dataset (M4SFWD), which provides remote sensing data on forest fires across diverse terrain types, weather conditions, light flux densities as well as different numbers of wildfire objects. Researchers can employ this dataset to improve the efficacy of fire and smoke detection algorithms, promoting continuous forest monitoring. This paper presents a Multi-Faceted Synthetic Forest Wildfire Dataset based on Unreal Engine 5. We first constructed eight forest scenes with different terrains, weather conditions, and texture effects. We also simulated the light flux density at different times of the day by utilizing real-time ray tracing technology, which created realistic lighting and shadows. Secondly, we introduced a range of wildfire targets with varying scales and numbers into each scenario to enable multiple-angle shooting simulations from a UAV’s viewpoint. During evening hours and in foggy conditions, many objects resemble wildfires. To enhance the dataset’s precision and reliability for fire and smoke detection, 3,974 images were undergone pixel-level manual annotation using tools like labelImg. This annotation yielded 17,763 bounding boxes, which were subsequently statistically analyzed to ascertain their positions and proportions. Finally, we assessed the applicability of M4SFWD in single-stage, two-stage, and lightweight object detection algorithms by inputting the dataset into various algorithms with different parameter sizes. Based on the experimental results’ visualization, M4SFWD exhibited superior performance in scenarios with standard light flux density and large-scale wildfire objects. However, due to its complex contextual information and multiscale object features, false detections and missed detections occurred in other complex multi-faceted scenarios. Thus, optimizing the existing object detection algorithms will be necessary for future research. The dataset is available at: https://github.com/Philharmy-Wang/M4SFWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助10
刚刚
滚滚毛发布了新的文献求助50
1秒前
博ge完成签到 ,获得积分10
1秒前
青柠完成签到 ,获得积分10
3秒前
5秒前
小袁完成签到 ,获得积分10
6秒前
XMH发布了新的文献求助10
10秒前
chestnut灬完成签到 ,获得积分10
11秒前
科研通AI6应助耶耶采纳,获得10
16秒前
18秒前
董H完成签到,获得积分10
23秒前
深情的楷瑞完成签到 ,获得积分10
23秒前
动听的谷秋完成签到 ,获得积分10
23秒前
顺心的皮卡丘完成签到 ,获得积分10
23秒前
我是老大应助得咎采纳,获得10
23秒前
洼地的浮游生物完成签到,获得积分10
26秒前
cheong发布了新的文献求助10
26秒前
GingerF应助科研通管家采纳,获得50
33秒前
GingerF应助科研通管家采纳,获得50
33秒前
GingerF应助科研通管家采纳,获得50
33秒前
浮游应助科研通管家采纳,获得10
33秒前
小冠军完成签到,获得积分10
35秒前
elmacho完成签到 ,获得积分10
37秒前
Qin完成签到,获得积分10
41秒前
Cynthia发布了新的文献求助10
45秒前
GPTea应助临河盗龙采纳,获得50
53秒前
Nn完成签到 ,获得积分10
53秒前
55秒前
57秒前
mimi完成签到,获得积分10
58秒前
59秒前
吴小军发布了新的文献求助10
1分钟前
misa完成签到 ,获得积分10
1分钟前
超级天磊发布了新的文献求助10
1分钟前
Augustines发布了新的文献求助10
1分钟前
平常的老头完成签到,获得积分10
1分钟前
任性铅笔完成签到 ,获得积分10
1分钟前
镜花水月完成签到,获得积分10
1分钟前
立青完成签到 ,获得积分10
1分钟前
帅气的安柏完成签到,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136626
求助须知:如何正确求助?哪些是违规求助? 4336724
关于积分的说明 13510467
捐赠科研通 4174839
什么是DOI,文献DOI怎么找? 2289082
邀请新用户注册赠送积分活动 1289774
关于科研通互助平台的介绍 1231100