Novel multiclass classification machine learning approach for the early-stage classification of systemic autoimmune rheumatic diseases

医学 风湿性疾病 多类分类 机器学习 人工智能 免疫学 重症监护医学 类风湿性关节炎 支持向量机 计算机科学
作者
Yuhang Li,Wei Wei,Renren Ouyang,Rujia Chen,Ting Wang,Yuan Xu,Feng Wang,Hongyan Hou,Hongyan Hou
出处
期刊:Lupus science & medicine [BMJ]
卷期号:11 (1): e001125-e001125
标识
DOI:10.1136/lupus-2023-001125
摘要

Objective Systemic autoimmune rheumatic diseases (SARDs) encompass a diverse group of complex conditions with overlapping clinical features, making accurate diagnosis challenging. This study aims to develop a multiclass machine learning (ML) model for early-stage SARDs classification using accessible laboratory indicators. Methods A total of 925 SARDs patients were included, categorised into SLE, Sjögren’s syndrome (SS) and inflammatory myositis (IM). Clinical characteristics and laboratory markers were collected and nine key indicators, including anti-dsDNA, anti-SS-A60, anti-Sm/nRNP, antichromatin, anti-dsDNA (indirect immunofluorescence assay), haemoglobin (Hb), platelet, neutrophil percentage and cytoplasmic patterns (AC-19, AC-20), were selected for model building. Various ML algorithms were used to construct a tripartite classification ML model. Results Patients were divided into two cohorts, cohort 1 was used to construct a tripartite classification model. Among models assessed, the random forest (RF) model demonstrated superior performance in distinguishing SLE, IM and SS (with area under curve=0.953, 0.903 and 0.836; accuracy= 0.892, 0.869 and 0.857; sensitivity= 0.890, 0.868 and 0.795; specificity= 0.910, 0.836 and 0.748; positive predictive value=0.922, 0.727 and 0.663; and negative predictive value= 0.854, 0.915 and 0.879). The RF model excelled in classifying SLE (precision=0.930, recall=0.985, F1 score=0.957). For IM and SS, RF model outcomes were (precision=0.793, 0.950; recall=0.920, 0.679; F1 score=0.852, 0.792). Cohort 2 served as an external validation set, achieving an overall accuracy of 87.3%. Individual classification performances for SLE, SS and IM were excellent, with precision, recall and F1 scores specified. SHAP analysis highlighted significant contributions from antibody profiles. Conclusion This pioneering multiclass ML model, using basic laboratory indicators, enhances clinical feasibility and demonstrates promising potential for SARDs classification. The collaboration of clinical expertise and ML offers a nuanced approach to SARDs classification, with potential for enhanced patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
3秒前
3秒前
执着亿先发布了新的文献求助10
3秒前
wlei发布了新的文献求助10
3秒前
3秒前
harmy发布了新的文献求助10
4秒前
guoyanna发布了新的文献求助10
4秒前
tesla发布了新的文献求助10
5秒前
6秒前
7秒前
Jasper应助pl采纳,获得10
7秒前
啦咯是吗完成签到 ,获得积分10
7秒前
8秒前
8秒前
大橙子完成签到,获得积分10
8秒前
8秒前
9秒前
南生发布了新的文献求助20
9秒前
10秒前
10秒前
10秒前
11秒前
小p发布了新的文献求助10
11秒前
Vianne发布了新的文献求助10
11秒前
无奈善愁完成签到,获得积分20
12秒前
在水一方应助CXLGE采纳,获得10
12秒前
RY文献下载完成签到,获得积分10
12秒前
DALIzyuan发布了新的文献求助10
13秒前
14秒前
spark317发布了新的文献求助10
14秒前
jyy应助李小猫采纳,获得10
14秒前
14秒前
ML发布了新的文献求助10
15秒前
15秒前
15秒前
所所应助JinZ采纳,获得10
16秒前
无奈善愁发布了新的文献求助30
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135254
求助须知:如何正确求助?哪些是违规求助? 2786259
关于积分的说明 7776312
捐赠科研通 2442153
什么是DOI,文献DOI怎么找? 1298474
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847