Novel multiclass classification machine learning approach for the early-stage classification of systemic autoimmune rheumatic diseases

医学 风湿性疾病 多类分类 机器学习 人工智能 免疫学 重症监护医学 类风湿性关节炎 支持向量机 计算机科学
作者
Yuhang Li,Wei Wei,Renren Ouyang,Rujia Chen,Ting Wang,Yuan Xu,Feng Wang,Hongyan Hou,Hongyan Hou
出处
期刊:Lupus science & medicine [BMJ]
卷期号:11 (1): e001125-e001125
标识
DOI:10.1136/lupus-2023-001125
摘要

Objective Systemic autoimmune rheumatic diseases (SARDs) encompass a diverse group of complex conditions with overlapping clinical features, making accurate diagnosis challenging. This study aims to develop a multiclass machine learning (ML) model for early-stage SARDs classification using accessible laboratory indicators. Methods A total of 925 SARDs patients were included, categorised into SLE, Sjögren’s syndrome (SS) and inflammatory myositis (IM). Clinical characteristics and laboratory markers were collected and nine key indicators, including anti-dsDNA, anti-SS-A60, anti-Sm/nRNP, antichromatin, anti-dsDNA (indirect immunofluorescence assay), haemoglobin (Hb), platelet, neutrophil percentage and cytoplasmic patterns (AC-19, AC-20), were selected for model building. Various ML algorithms were used to construct a tripartite classification ML model. Results Patients were divided into two cohorts, cohort 1 was used to construct a tripartite classification model. Among models assessed, the random forest (RF) model demonstrated superior performance in distinguishing SLE, IM and SS (with area under curve=0.953, 0.903 and 0.836; accuracy= 0.892, 0.869 and 0.857; sensitivity= 0.890, 0.868 and 0.795; specificity= 0.910, 0.836 and 0.748; positive predictive value=0.922, 0.727 and 0.663; and negative predictive value= 0.854, 0.915 and 0.879). The RF model excelled in classifying SLE (precision=0.930, recall=0.985, F1 score=0.957). For IM and SS, RF model outcomes were (precision=0.793, 0.950; recall=0.920, 0.679; F1 score=0.852, 0.792). Cohort 2 served as an external validation set, achieving an overall accuracy of 87.3%. Individual classification performances for SLE, SS and IM were excellent, with precision, recall and F1 scores specified. SHAP analysis highlighted significant contributions from antibody profiles. Conclusion This pioneering multiclass ML model, using basic laboratory indicators, enhances clinical feasibility and demonstrates promising potential for SARDs classification. The collaboration of clinical expertise and ML offers a nuanced approach to SARDs classification, with potential for enhanced patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DNAdamage发布了新的文献求助10
1秒前
就叫希望吧完成签到 ,获得积分10
1秒前
咸鱼饭团完成签到,获得积分10
1秒前
Polong发布了新的文献求助10
2秒前
Yilam完成签到,获得积分10
2秒前
3秒前
4秒前
hefunan发布了新的文献求助10
4秒前
小蘑菇应助ding采纳,获得10
4秒前
彭于晏应助appledan98采纳,获得10
4秒前
CipherSage应助demo1采纳,获得10
4秒前
科研通AI6应助wenyliang采纳,获得10
5秒前
叫我理智完成签到,获得积分10
5秒前
17完成签到 ,获得积分10
6秒前
6秒前
白开完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
DNAdamage完成签到,获得积分10
9秒前
yikeyaowanzi发布了新的文献求助10
10秒前
烂漫夜梦完成签到,获得积分10
10秒前
10秒前
稳重的蛟凤应助白开采纳,获得10
10秒前
yakami发布了新的文献求助10
11秒前
bkagyin应助奋斗的青年采纳,获得10
11秒前
科研通AI6应助乐观的阿这采纳,获得10
12秒前
hefunan完成签到,获得积分10
14秒前
xht发布了新的文献求助10
15秒前
15秒前
15秒前
寂寞的无敌完成签到,获得积分10
15秒前
打打应助酷酷妙梦采纳,获得10
15秒前
15秒前
demo1发布了新的文献求助10
15秒前
16秒前
天份完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758607
求助须知:如何正确求助?哪些是违规求助? 5516616
关于积分的说明 15391531
捐赠科研通 4895924
什么是DOI,文献DOI怎么找? 2633383
邀请新用户注册赠送积分活动 1581501
关于科研通互助平台的介绍 1537138