Novel multiclass classification machine learning approach for the early-stage classification of systemic autoimmune rheumatic diseases

医学 风湿性疾病 多类分类 机器学习 人工智能 免疫学 重症监护医学 类风湿性关节炎 支持向量机 计算机科学
作者
Yuhang Li,Wei Wei,Renren Ouyang,Rujia Chen,Ting Wang,Yuan Xu,Feng Wang,Hongyan Hou,Hongyan Hou
出处
期刊:Lupus science & medicine [BMJ]
卷期号:11 (1): e001125-e001125
标识
DOI:10.1136/lupus-2023-001125
摘要

Objective Systemic autoimmune rheumatic diseases (SARDs) encompass a diverse group of complex conditions with overlapping clinical features, making accurate diagnosis challenging. This study aims to develop a multiclass machine learning (ML) model for early-stage SARDs classification using accessible laboratory indicators. Methods A total of 925 SARDs patients were included, categorised into SLE, Sjögren’s syndrome (SS) and inflammatory myositis (IM). Clinical characteristics and laboratory markers were collected and nine key indicators, including anti-dsDNA, anti-SS-A60, anti-Sm/nRNP, antichromatin, anti-dsDNA (indirect immunofluorescence assay), haemoglobin (Hb), platelet, neutrophil percentage and cytoplasmic patterns (AC-19, AC-20), were selected for model building. Various ML algorithms were used to construct a tripartite classification ML model. Results Patients were divided into two cohorts, cohort 1 was used to construct a tripartite classification model. Among models assessed, the random forest (RF) model demonstrated superior performance in distinguishing SLE, IM and SS (with area under curve=0.953, 0.903 and 0.836; accuracy= 0.892, 0.869 and 0.857; sensitivity= 0.890, 0.868 and 0.795; specificity= 0.910, 0.836 and 0.748; positive predictive value=0.922, 0.727 and 0.663; and negative predictive value= 0.854, 0.915 and 0.879). The RF model excelled in classifying SLE (precision=0.930, recall=0.985, F1 score=0.957). For IM and SS, RF model outcomes were (precision=0.793, 0.950; recall=0.920, 0.679; F1 score=0.852, 0.792). Cohort 2 served as an external validation set, achieving an overall accuracy of 87.3%. Individual classification performances for SLE, SS and IM were excellent, with precision, recall and F1 scores specified. SHAP analysis highlighted significant contributions from antibody profiles. Conclusion This pioneering multiclass ML model, using basic laboratory indicators, enhances clinical feasibility and demonstrates promising potential for SARDs classification. The collaboration of clinical expertise and ML offers a nuanced approach to SARDs classification, with potential for enhanced patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LT发布了新的文献求助10
1秒前
好好学习发布了新的文献求助10
1秒前
3秒前
fft完成签到,获得积分20
3秒前
JamesPei应助annie采纳,获得10
4秒前
4秒前
5秒前
zik应助yuan采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
李萌发布了新的文献求助10
7秒前
大龙哥886应助xzx采纳,获得10
8秒前
万能图书馆应助yangmiemie采纳,获得10
9秒前
科研通AI6应助稳重的又菱采纳,获得10
10秒前
LucyLi发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
lin完成签到,获得积分10
13秒前
yangmiemie完成签到,获得积分10
15秒前
桐桐应助麦辣基米堡采纳,获得10
16秒前
杨海菡发布了新的文献求助10
17秒前
17秒前
科研通AI6应助阔达雨灵采纳,获得10
18秒前
lt关闭了lt文献求助
18秒前
19秒前
bkagyin应助lin采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
杨海菡完成签到,获得积分10
21秒前
wlf完成签到,获得积分10
23秒前
yangmiemie发布了新的文献求助10
24秒前
Breez2004发布了新的文献求助10
24秒前
yuan完成签到,获得积分10
24秒前
你好完成签到 ,获得积分10
25秒前
汉堡包应助xiangshuoqi采纳,获得10
25秒前
科目三应助张zhang采纳,获得10
28秒前
30秒前
31秒前
31秒前
32秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583159
求助须知:如何正确求助?哪些是违规求助? 4667130
关于积分的说明 14765305
捐赠科研通 4609254
什么是DOI,文献DOI怎么找? 2529077
邀请新用户注册赠送积分活动 1498340
关于科研通互助平台的介绍 1466992