A radiomics-based brain network in T1 images: construction, attributes, and applications

无线电技术 神经影像学 相似性(几何) 计算机科学 体素 人工智能 构造(python库) 结构相似性 机器学习 神经科学 模式识别(心理学) 数据挖掘 心理学 图像(数学) 程序设计语言
作者
Han Liu,Zhe Ma,Lijiang Wei,Zhenpeng Chen,Yun Peng,Zhicheng Jiao,Harrison X. Bai,Bin Jing
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (2) 被引量:3
标识
DOI:10.1093/cercor/bhae016
摘要

Abstract T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test–retest reliability, and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤锐完成签到,获得积分10
9秒前
1234567890完成签到 ,获得积分10
11秒前
ding应助科研通管家采纳,获得10
12秒前
12秒前
呐呐应助科研通管家采纳,获得20
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
14秒前
兼听则明发布了新的文献求助30
16秒前
kk关注了科研通微信公众号
20秒前
加减乘除完成签到,获得积分10
23秒前
27秒前
Lucas应助米格采纳,获得10
31秒前
40秒前
40秒前
小橙子完成签到 ,获得积分10
40秒前
45秒前
米格发布了新的文献求助10
46秒前
48秒前
石语芙发布了新的文献求助10
51秒前
51秒前
???发布了新的文献求助10
53秒前
panx驳回了Lucas应助
53秒前
sharon发布了新的文献求助10
57秒前
59秒前
小鸭子发布了新的文献求助10
1分钟前
完美世界应助沧海医僧笑采纳,获得10
1分钟前
渔舟唱晚应助雪山飞虹采纳,获得10
1分钟前
李健应助???采纳,获得10
1分钟前
zzz完成签到,获得积分20
1分钟前
1分钟前
Bazinga完成签到,获得积分10
1分钟前
sharon完成签到,获得积分20
1分钟前
1分钟前
爆米花应助呆呆的猕猴桃采纳,获得10
1分钟前
慕凛发布了新的文献求助10
1分钟前
1364135702完成签到 ,获得积分10
1分钟前
深情安青应助感性的梦竹采纳,获得10
1分钟前
1分钟前
cmy完成签到,获得积分10
1分钟前
Hello应助yy采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
The Problem-solving Capacity of the Modern State 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371994
求助须知:如何正确求助?哪些是违规求助? 2989966
关于积分的说明 8737802
捐赠科研通 2673233
什么是DOI,文献DOI怎么找? 1464401
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668880