Dual-Stream Context-Aware Neural Network for Survival Prediction from Whole Slide Images

计算机科学 背景(考古学) 特征(语言学) 人工智能 联营 模式识别(心理学) 比例(比率) 过程(计算) 数据挖掘 机器学习 物理 古生物学 哲学 操作系统 生物 量子力学 语言学
作者
Junxiu Gao,Shan Jin,Ranran Wang,Mingkang Wang,Tong Wang,Hongming Xu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-14
标识
DOI:10.1007/978-981-99-8549-4_1
摘要

Whole slide images (WSI) encompass a wealth of information about the tumor micro-environment, which holds prognostic value for patients’ survival. While significant progress has been made in predicting patients’ survival risks from WSI, existing studies often overlook the importance of incorporating multi-resolution and multi-scale histological image features, as well as their interactions, in the prediction process. This paper introduces the dual-stream context-aware (DSCA) model, which aims to enhance survival risk prediction by leveraging multi-resolution histological images and multi-scale feature maps, along with their contextual information. The DSCA model comprises three prediction branches: two ResNet50 branches that learn features from multi-resolution images, and one feature fusion branch that aggregates multi-scale features by exploring their interactions. The feature fusion branch of the DSCA model incorporates a mixed attention module, which performs adaptive spatial fusion to enhance the multi-scale feature maps. Subsequently, the self-attention mechanism is developed to learn contextual and interactive information from the enhanced feature maps. The ordinal Cox loss is employed to optimize the model for generating patch-level predictions. Patient-level predictions are obtained by mean-pooling patch-level results. Experimental results conducted on colorectal cancer cohorts demonstrate that the proposed DSCA model achieves significant improvements over state-of-the-art methods in survival prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静芸遥发布了新的文献求助10
刚刚
文静芸遥发布了新的文献求助10
刚刚
文静芸遥发布了新的文献求助10
刚刚
清脆靳发布了新的文献求助10
刚刚
sdx000126发布了新的文献求助10
刚刚
qaw完成签到,获得积分10
1秒前
1秒前
科研小肖发布了新的文献求助20
2秒前
角鸮完成签到,获得积分10
2秒前
点点发布了新的文献求助10
3秒前
胖虎啊完成签到,获得积分10
3秒前
ATMleg发布了新的文献求助10
4秒前
QI发布了新的文献求助10
4秒前
5秒前
Hello应助applepie采纳,获得10
6秒前
6秒前
Jasper应助fdpb采纳,获得10
7秒前
7秒前
跳跃楼房发布了新的文献求助10
7秒前
安详的语蕊完成签到,获得积分10
9秒前
9秒前
YJH完成签到,获得积分10
9秒前
852应助QI采纳,获得10
10秒前
10秒前
活力的bird完成签到 ,获得积分10
10秒前
WT发布了新的文献求助10
10秒前
fff发布了新的文献求助10
11秒前
ATMleg完成签到,获得积分10
11秒前
11秒前
midrain应助激昂的元芹采纳,获得10
11秒前
12秒前
Hello应助金金金采纳,获得10
12秒前
酷酷云朵完成签到 ,获得积分10
12秒前
材料生完成签到,获得积分20
13秒前
Yi发布了新的文献求助10
14秒前
qifengle发布了新的文献求助10
14秒前
游侠客完成签到,获得积分10
15秒前
tynuxu完成签到,获得积分10
15秒前
猫咪老师应助hqwar3采纳,获得200
16秒前
秋水发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599