Dual-Stream Context-Aware Neural Network for Survival Prediction from Whole Slide Images

计算机科学 背景(考古学) 特征(语言学) 人工智能 联营 模式识别(心理学) 比例(比率) 过程(计算) 数据挖掘 机器学习 物理 古生物学 哲学 操作系统 生物 量子力学 语言学
作者
Junxiu Gao,Shan Jin,Ranran Wang,Mingkang Wang,Tong Wang,Hongming Xu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-14
标识
DOI:10.1007/978-981-99-8549-4_1
摘要

Whole slide images (WSI) encompass a wealth of information about the tumor micro-environment, which holds prognostic value for patients’ survival. While significant progress has been made in predicting patients’ survival risks from WSI, existing studies often overlook the importance of incorporating multi-resolution and multi-scale histological image features, as well as their interactions, in the prediction process. This paper introduces the dual-stream context-aware (DSCA) model, which aims to enhance survival risk prediction by leveraging multi-resolution histological images and multi-scale feature maps, along with their contextual information. The DSCA model comprises three prediction branches: two ResNet50 branches that learn features from multi-resolution images, and one feature fusion branch that aggregates multi-scale features by exploring their interactions. The feature fusion branch of the DSCA model incorporates a mixed attention module, which performs adaptive spatial fusion to enhance the multi-scale feature maps. Subsequently, the self-attention mechanism is developed to learn contextual and interactive information from the enhanced feature maps. The ordinal Cox loss is employed to optimize the model for generating patch-level predictions. Patient-level predictions are obtained by mean-pooling patch-level results. Experimental results conducted on colorectal cancer cohorts demonstrate that the proposed DSCA model achieves significant improvements over state-of-the-art methods in survival prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xing发布了新的文献求助30
1秒前
yyanxuemin919发布了新的文献求助10
1秒前
1秒前
Alien发布了新的文献求助10
2秒前
蜡笔小韩发布了新的文献求助10
2秒前
yjk完成签到,获得积分10
3秒前
ssssbbbb完成签到,获得积分10
3秒前
瘦子想胖发布了新的文献求助10
4秒前
爻爻发布了新的文献求助80
4秒前
4秒前
科目三应助风趣的梦露采纳,获得30
4秒前
6秒前
7秒前
Chara_kara完成签到,获得积分10
8秒前
10秒前
zpl发布了新的文献求助10
10秒前
恰逢发布了新的文献求助10
10秒前
12秒前
12秒前
烟花应助Alien采纳,获得10
13秒前
16秒前
大个应助haifeng采纳,获得10
16秒前
Iridescent发布了新的文献求助10
18秒前
噗噗发布了新的文献求助10
18秒前
Lucas应助zpl采纳,获得10
18秒前
panini完成签到,获得积分10
18秒前
19秒前
19秒前
Alien完成签到,获得积分10
21秒前
25秒前
25秒前
25秒前
共享精神应助大气的月饼采纳,获得10
25秒前
26秒前
27秒前
徐团伟完成签到 ,获得积分10
27秒前
28秒前
Iridescent完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866