甲苯
化学
甲醇
沸石
ZSM-5型
催化作用
二甲苯
活化能
无机化学
有机化学
作者
Wen‐Bin Chen,Hui Zhang,Lixia Ling,Yang Zhang,Xiaohua Shen,Xiaofeng Li,Riguang Zhang,Baojun Wang
标识
DOI:10.1016/j.micromeso.2023.112964
摘要
The methylation of toluene with methanol is an important process for the preparation of p-xylene (PX). The modification of Ni-containing species in HZSM-5 can improve the yield of PX. However, the active site existence form of Ni is unclear. The intrinsic reaction mechanisms for methylation of toluene with methanol over HZSM-5 with NiOH+ and Ni2+ as Lewis acid have been investigated. The results indicate that the introduction of Ni2+ decreases the activity for the methanol dissociation, whereas NiOH+ enhances the activity with a reduction in activation energy of 100.7 kJ/mol. Furthermore, the generation of three xylenes, as well as the conversion of PX to 1,2,4-Trimethylbenzene (1,2,4-TMB) have also been studied over NiOH+/HZSM-5. It is shown that PX is most easily formed with the lowest energy barrier of 84.8 kJ/mol in four products, implying the introduction of NiOH+ in HZSM-5 favors the formation of PX. In addition, molecular dynamics simulations show that toluene reacts with methanol to form xylenes mainly at the intersection of channels. PX exhibits a much higher self-diffusion coefficient than MX and OX when the temperature rises from 498 to 698 K. It can be concluded that NiOH+ is the active Ni-containing species and NiOH+/HZSM-5 is an excellent catalyst for the production of PX via the methylation of toluene with methanol.
科研通智能强力驱动
Strongly Powered by AbleSci AI