Evidence-based uncertainty-aware semi-supervised medical image segmentation

计算机科学 人工智能 机器学习 图像分割 分割 计算机视觉 图像(数学) 模式识别(心理学)
作者
Yingyu Chen,Ziyuan Yang,Chenyu Shen,Zhiwen Wang,Zhongzhou Zhang,Yang Qin,Xin Wei,Jingfeng Lu,Yan Liu,Yi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108004-108004 被引量:24
标识
DOI:10.1016/j.compbiomed.2024.108004
摘要

Semi-Supervised Learning (SSL) has demonstrated great potential to reduce the dependence on a large set of annotated data, which is challenging to collect in clinical practice. One of the most important SSL methods is to generate pseudo labels from the unlabeled data using a network model trained with labeled data, which will inevitably introduce false pseudo labels into the training process and potentially jeopardize performance. To address this issue, uncertainty-aware methods have emerged as a promising solution and have gained considerable attention recently. However, current uncertainty-aware methods usually face the dilemma of balancing the additional computational cost, uncertainty estimation accuracy, and theoretical basis in a unified training paradigm. To address this issue, we propose to integrate the Dempster–Shafer Theory of Evidence (DST) into SSL-based medical image segmentation, dubbed EVidential Inference Learning (EVIL). EVIL performs as a novel consistency regularization-based training paradigm, which enforces consistency on predictions perturbed by two networks with different parameters to enhance generalization Additionally, EVIL provides a theoretically assured solution for precise uncertainty quantification within a single forward pass. By discarding highly unreliable pseudo labels after uncertainty estimation, trustworthy pseudo labels can be generated and incorporated into subsequent model training. The experimental results demonstrate that the proposed approach performs competitively when benchmarked against several state-of-the-art methods on public datasets, i.e., ACDC, MM-WHS, and MonuSeg. The code can be found at https://github.com/CYYukio/EVidential-Inference-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artemis完成签到,获得积分10
刚刚
桐桐应助星空物语采纳,获得10
刚刚
Bystander发布了新的文献求助10
刚刚
还单身的心情完成签到 ,获得积分10
刚刚
hhddr发布了新的文献求助50
1秒前
恋恋青葡萄完成签到,获得积分10
1秒前
斧王发布了新的文献求助10
1秒前
Alay发布了新的文献求助10
2秒前
小蘑菇应助喜悦的唇膏采纳,获得10
2秒前
2秒前
2秒前
陈哈哈发布了新的文献求助10
2秒前
芳菲依旧应助虤铠采纳,获得50
2秒前
张志超发布了新的文献求助10
3秒前
3秒前
Criminology34举报pan求助涉嫌违规
4秒前
hanli发布了新的文献求助10
4秒前
颜靖仇发布了新的文献求助10
4秒前
精明的冰淇淋完成签到 ,获得积分10
4秒前
4秒前
超级小鸭子完成签到,获得积分10
5秒前
896889655完成签到 ,获得积分20
5秒前
茶油豆腐完成签到,获得积分10
5秒前
烟花应助石头采纳,获得10
5秒前
小西完成签到,获得积分10
6秒前
ly2333完成签到,获得积分10
6秒前
乂氼发布了新的文献求助10
6秒前
6秒前
ding应助幽壑之潜蛟采纳,获得10
7秒前
7秒前
梦茵发布了新的文献求助10
7秒前
小乔应助白英采纳,获得10
8秒前
zsy真帅呀发布了新的文献求助10
8秒前
顾矜应助吃薯条采纳,获得10
8秒前
霉霉完成签到 ,获得积分10
9秒前
9秒前
cnyyp发布了新的文献求助10
9秒前
在水一方应助苗轩采纳,获得10
9秒前
CodeCraft应助薯片采纳,获得10
9秒前
无花果应助薯片采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810