Evidence-based uncertainty-aware semi-supervised medical image segmentation

计算机科学 人工智能 机器学习 图像分割 分割 计算机视觉 图像(数学) 模式识别(心理学)
作者
Ying-Yu Chen,Ziyuan Yang,Chenyu Shen,Zhiwen Wang,Zhongzhou Zhang,Yang Qin,Xin Wei,Jingfeng Lu,Yan Liu,Yi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108004-108004 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108004
摘要

Semi-Supervised Learning (SSL) has demonstrated great potential to reduce the dependence on a large set of annotated data, which is challenging to collect in clinical practice. One of the most important SSL methods is to generate pseudo labels from the unlabeled data using a network model trained with labeled data, which will inevitably introduce false pseudo labels into the training process and potentially jeopardize performance. To address this issue, uncertainty-aware methods have emerged as a promising solution and have gained considerable attention recently. However, current uncertainty-aware methods usually face the dilemma of balancing the additional computational cost, uncertainty estimation accuracy, and theoretical basis in a unified training paradigm. To address this issue, we propose to integrate the Dempster–Shafer Theory of Evidence (DST) into SSL-based medical image segmentation, dubbed EVidential Inference Learning (EVIL). EVIL performs as a novel consistency regularization-based training paradigm, which enforces consistency on predictions perturbed by two networks with different parameters to enhance generalization Additionally, EVIL provides a theoretically assured solution for precise uncertainty quantification within a single forward pass. By discarding highly unreliable pseudo labels after uncertainty estimation, trustworthy pseudo labels can be generated and incorporated into subsequent model training. The experimental results demonstrate that the proposed approach performs competitively when benchmarked against several state-of-the-art methods on public datasets, i.e., ACDC, MM-WHS, and MonuSeg. The code can be found at https://github.com/CYYukio/EVidential-Inference-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GXR发布了新的文献求助10
刚刚
伶俐绿柏发布了新的文献求助10
1秒前
1秒前
伊可完成签到 ,获得积分10
1秒前
2秒前
2秒前
dd完成签到,获得积分10
2秒前
希文完成签到,获得积分10
2秒前
2秒前
3秒前
NovermberRain发布了新的文献求助10
3秒前
3秒前
3秒前
Raisin完成签到,获得积分10
3秒前
香查朵完成签到,获得积分10
3秒前
song给一步一步的求助进行了留言
4秒前
Arthur Zhu发布了新的文献求助10
4秒前
细心的蚂蚁完成签到,获得积分10
4秒前
辅助成灾完成签到,获得积分10
5秒前
东晓完成签到,获得积分10
5秒前
木子木子李关注了科研通微信公众号
5秒前
十二发布了新的文献求助20
6秒前
xianyuerkyt完成签到 ,获得积分10
6秒前
康达发布了新的文献求助10
6秒前
南漂发布了新的文献求助30
6秒前
6秒前
Hello应助話膤采纳,获得10
7秒前
包靡靡发布了新的文献求助10
7秒前
归尘发布了新的文献求助10
7秒前
SciGPT应助GXR采纳,获得10
7秒前
科研通AI2S应助shunshun采纳,获得10
8秒前
飘逸南霜发布了新的文献求助10
8秒前
诸沧海发布了新的文献求助10
8秒前
搜集达人应助今今今今朝采纳,获得10
8秒前
木头发布了新的文献求助10
9秒前
9秒前
紧张的友灵完成签到,获得积分10
10秒前
butterfly发布了新的文献求助10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530