Evidence-based uncertainty-aware semi-supervised medical image segmentation

计算机科学 人工智能 机器学习 图像分割 分割 计算机视觉 图像(数学) 模式识别(心理学)
作者
Ying-Yu Chen,Ziyuan Yang,Chenyu Shen,Zhiwen Wang,Zhongzhou Zhang,Yang Qin,Xin Wei,Jingfeng Lu,Yan Liu,Yi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108004-108004 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108004
摘要

Semi-Supervised Learning (SSL) has demonstrated great potential to reduce the dependence on a large set of annotated data, which is challenging to collect in clinical practice. One of the most important SSL methods is to generate pseudo labels from the unlabeled data using a network model trained with labeled data, which will inevitably introduce false pseudo labels into the training process and potentially jeopardize performance. To address this issue, uncertainty-aware methods have emerged as a promising solution and have gained considerable attention recently. However, current uncertainty-aware methods usually face the dilemma of balancing the additional computational cost, uncertainty estimation accuracy, and theoretical basis in a unified training paradigm. To address this issue, we propose to integrate the Dempster–Shafer Theory of Evidence (DST) into SSL-based medical image segmentation, dubbed EVidential Inference Learning (EVIL). EVIL performs as a novel consistency regularization-based training paradigm, which enforces consistency on predictions perturbed by two networks with different parameters to enhance generalization Additionally, EVIL provides a theoretically assured solution for precise uncertainty quantification within a single forward pass. By discarding highly unreliable pseudo labels after uncertainty estimation, trustworthy pseudo labels can be generated and incorporated into subsequent model training. The experimental results demonstrate that the proposed approach performs competitively when benchmarked against several state-of-the-art methods on public datasets, i.e., ACDC, MM-WHS, and MonuSeg. The code can be found at https://github.com/CYYukio/EVidential-Inference-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助wjx采纳,获得10
2秒前
打打应助wjx采纳,获得30
2秒前
JamesPei应助wjx采纳,获得10
2秒前
可爱的函函应助wjx采纳,获得10
2秒前
深情安青应助wjx采纳,获得10
2秒前
在水一方应助wjx采纳,获得10
3秒前
科研通AI2S应助wjx采纳,获得10
3秒前
氮三氟甲基应助wjx采纳,获得10
3秒前
FashionBoy应助wjx采纳,获得30
3秒前
天天快乐应助wjx采纳,获得10
3秒前
ding应助一一采纳,获得10
4秒前
weishen完成签到,获得积分0
4秒前
4秒前
福尔摩曦完成签到,获得积分10
5秒前
5秒前
Feng发布了新的文献求助10
5秒前
聪明可爱小绘理应助高磊采纳,获得10
6秒前
wt完成签到,获得积分10
7秒前
444关闭了444文献求助
8秒前
ZYQ完成签到 ,获得积分10
8秒前
苏苏完成签到,获得积分10
9秒前
9秒前
9秒前
高大黄蜂完成签到,获得积分10
10秒前
新青年应助gmc采纳,获得10
10秒前
勤劳落雁发布了新的文献求助10
10秒前
超帅的从菡完成签到 ,获得积分10
10秒前
leena发布了新的文献求助10
10秒前
斯文败类应助Hh采纳,获得10
11秒前
高大黄蜂发布了新的文献求助10
12秒前
英姑应助guygun采纳,获得10
12秒前
Feng完成签到,获得积分10
13秒前
14秒前
花花完成签到,获得积分10
14秒前
一言矣完成签到 ,获得积分10
15秒前
海绵宝宝完成签到,获得积分10
16秒前
贪吃的猴子完成签到,获得积分10
16秒前
long完成签到 ,获得积分10
17秒前
研友_LOqqmZ发布了新的文献求助10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824