Evidence-based uncertainty-aware semi-supervised medical image segmentation

计算机科学 人工智能 机器学习 图像分割 分割 计算机视觉 图像(数学) 模式识别(心理学)
作者
Ying-Yu Chen,Ziyuan Yang,Chenyu Shen,Zhiwen Wang,Zhongzhou Zhang,Yang Qin,Xin Wei,Jingfeng Lu,Yan Liu,Yi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108004-108004 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108004
摘要

Semi-Supervised Learning (SSL) has demonstrated great potential to reduce the dependence on a large set of annotated data, which is challenging to collect in clinical practice. One of the most important SSL methods is to generate pseudo labels from the unlabeled data using a network model trained with labeled data, which will inevitably introduce false pseudo labels into the training process and potentially jeopardize performance. To address this issue, uncertainty-aware methods have emerged as a promising solution and have gained considerable attention recently. However, current uncertainty-aware methods usually face the dilemma of balancing the additional computational cost, uncertainty estimation accuracy, and theoretical basis in a unified training paradigm. To address this issue, we propose to integrate the Dempster–Shafer Theory of Evidence (DST) into SSL-based medical image segmentation, dubbed EVidential Inference Learning (EVIL). EVIL performs as a novel consistency regularization-based training paradigm, which enforces consistency on predictions perturbed by two networks with different parameters to enhance generalization Additionally, EVIL provides a theoretically assured solution for precise uncertainty quantification within a single forward pass. By discarding highly unreliable pseudo labels after uncertainty estimation, trustworthy pseudo labels can be generated and incorporated into subsequent model training. The experimental results demonstrate that the proposed approach performs competitively when benchmarked against several state-of-the-art methods on public datasets, i.e., ACDC, MM-WHS, and MonuSeg. The code can be found at https://github.com/CYYukio/EVidential-Inference-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淳于如雪发布了新的文献求助10
刚刚
会思考的狐狸完成签到 ,获得积分10
1秒前
czy发布了新的文献求助10
1秒前
1秒前
1秒前
桐桐应助小鱼儿采纳,获得10
2秒前
充电宝应助阿宝采纳,获得10
2秒前
与其奈何发布了新的文献求助10
2秒前
慢慢完成签到,获得积分10
3秒前
3秒前
妮妮完成签到,获得积分20
3秒前
汉堡包应助袁思宇采纳,获得10
3秒前
日暖月寒完成签到,获得积分10
3秒前
3秒前
18621058639完成签到,获得积分10
4秒前
5秒前
哈基汪完成签到,获得积分10
5秒前
杜小杜发布了新的文献求助10
5秒前
6秒前
7秒前
sass发布了新的文献求助10
7秒前
7秒前
Rainnn发布了新的文献求助10
8秒前
8秒前
完美世界应助有点冷采纳,获得10
9秒前
博修发布了新的文献求助10
9秒前
10秒前
Lucas应助瘾9采纳,获得10
11秒前
杜小杜完成签到,获得积分10
11秒前
止影子发布了新的文献求助30
11秒前
王冰洁发布了新的文献求助10
11秒前
11秒前
典雅的俊驰应助Kervaff采纳,获得10
12秒前
123应助粗犷的灵松采纳,获得100
12秒前
Swilder完成签到 ,获得积分10
13秒前
MIST留下了新的社区评论
14秒前
深夜诗人完成签到,获得积分10
14秒前
海绵宝宝发布了新的文献求助10
14秒前
顾矜应助芘二胺采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301228
求助须知:如何正确求助?哪些是违规求助? 2935961
关于积分的说明 8475259
捐赠科研通 2609583
什么是DOI,文献DOI怎么找? 1424790
科研通“疑难数据库(出版商)”最低求助积分说明 662126
邀请新用户注册赠送积分活动 646117