亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prospective Evaluation of Machine Learning for Public Health Screening: Identifying Unknown Hepatitis C Carriers

公共卫生 医学 人工智能 肝炎 计算机科学 病毒学 环境卫生 机器学习 病理
作者
Noa Dagan,Ori Magen,Michael Leshchinsky,Maya Makov-Assif,Marc Lipsitch,Ben Y. Reis,Shlomit Yaron,Doron Netzer,Ran D. Balicer
标识
DOI:10.1056/aioa2300012
摘要

BackgroundCompared with traditional population-wide screening approaches, screening based on machine-learning models enables the targeted identification of high-risk individuals. We describe the development of machine-learning models that address the pressing need for identifying unknown hepatitis C virus (HCV) carriers and measure the real-world yield of this approach deployed in a nationwide setting.MethodsRetrospective data on 18- to 79-year-old members of Israel's largest health care organization tested for HCV from 2013 to 2021 were used to train and test prediction models for identifying active HCV carriers. In August 2021, over 1.5 million members eligible for screening, according to the U.S. Preventive Services Task Force (USPSTF) recommendations, were prospectively evaluated by the top-performing model based on XGBoost, and a staged process of outreach to the highest-risk members began. In November 2022, the yield of the XGBoost-based screening was evaluated and compared with the concurrent testing of USPSTF screening–eligible members.ResultsThe retrospective cohort used for model development included 492,290 individuals, with 0.1% confirmed active HCV carriers. The best-performing model, based on XGBoost, yielded an area under the receiver operating characteristic curve of 0.95. Selecting the top 0.1%, 1%, and 5% of high-risk individuals for screening translated to positive predictive values of 18.2%, 6.2%, and 1.9% and sensitivities of 13.0%, 44.4%, and 67.6%, respectively. During the prospective outreach, a total of 477 members were screened for HCV antibodies, and 38 were eventually found to be active HCV carriers, yielding an extrapolated number needed to screen (NNS) of 10. Among the 53,403 USPSTF screening–eligible members who were tested over the same period, 38 were found to be active HCV carriers, yielding an NNS of 1029.ConclusionsA nationwide implementation of a machine-learning–based HCV screening managed to identify the same number of HCV carriers as the traditional screening approach while achieving over 100-fold-greater efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助沉静盼易采纳,获得10
1秒前
Swear完成签到 ,获得积分10
5秒前
沉静盼易完成签到,获得积分20
6秒前
凡人丿完成签到,获得积分10
12秒前
活力鸿完成签到,获得积分20
13秒前
20秒前
shenhai发布了新的文献求助10
24秒前
K神完成签到,获得积分10
28秒前
29秒前
41秒前
44秒前
flow发布了新的文献求助10
44秒前
小炮仗完成签到 ,获得积分10
46秒前
哭泣秋蝶发布了新的文献求助10
48秒前
flow完成签到,获得积分10
50秒前
宝贝完成签到,获得积分10
52秒前
jasam3514完成签到,获得积分10
53秒前
54秒前
贺兰完成签到,获得积分10
54秒前
55秒前
shenhai发布了新的文献求助10
59秒前
青花菜鱼得啦完成签到 ,获得积分10
1分钟前
cherrychou完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
mushanes完成签到 ,获得积分10
1分钟前
orixero应助结实的虔纹采纳,获得30
1分钟前
1分钟前
EasonL完成签到,获得积分10
1分钟前
程住气完成签到 ,获得积分10
1分钟前
1分钟前
akkk626完成签到 ,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
2分钟前
DD完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
梵莫完成签到,获得积分10
2分钟前
2分钟前
哭泣秋蝶发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989