无意识
地方政府
异丙酚
脑电图
麻醉
医学
神经科学
心理学
精神科
作者
Zhenhu Liang,Bo Tang,Yu Chang,Jing Wang,Duan Li,Xiaoli Li,Changwei Wei
出处
期刊:Anesthesiology
[Ovid Technologies (Wolters Kluwer)]
日期:2023-12-29
卷期号:140 (5): 935-949
被引量:3
标识
DOI:10.1097/aln.0000000000004896
摘要
Background Identifying the state-related “neural correlates of consciousness” for anesthetics-induced unconsciousness is challenging. Spatiotemporal complexity is a promising tool for investigating consciousness. The authors hypothesized that spatiotemporal complexity may serve as a state-related but not drug-related electroencephalography (EEG) indicator during an unconscious state induced by different anesthetic drugs (e.g., propofol and esketamine). Methods The authors recorded EEG from patients with unconsciousness induced by propofol (n = 10) and esketamine (n = 10). Both conventional microstate parameters and microstate complexity were analyzed. Spatiotemporal complexity was constructed by microstate sequences and complexity measures. Two different EEG microstate complexities were proposed to quantify the randomness (type I) and complexity (type II) of the EEG microstate series during the time course of the general anesthesia. Results The coverage and occurrence of microstate E (prefrontal pattern) and the duration of microstate B (right frontal pattern) could distinguish the states of preinduction wakefulness, unconsciousness, and recovery under both anesthetics. Type I EEG microstate complexity based on mean information gain significantly increased from awake to unconsciousness state (propofol: from mean ± SD, 1.562 ± 0.059 to 1.672 ± 0.023, P < 0.001; esketamine: 1.599 ± 0.051 to 1.687 ± 0.013, P < 0.001), and significantly decreased from unconsciousness to recovery state (propofol: 1.672 ± 0.023 to 1.537 ± 0.058, P < 0.001; esketamine: 1.687 ± 0.013 to 1.608 ± 0.028, P < 0.001) under both anesthetics. In contrast, type II EEG microstate fluctuation complexity significantly decreased in the unconscious state under both drugs (propofol: from 2.291 ± 0.771 to 0.782 ± 0.163, P < 0.001; esketamine: from 1.645 ± 0.417 to 0.647 ± 0.252, P < 0.001), and then increased in the recovery state (propofol: 0.782 ± 0.163 to 2.446 ± 0.723, P < 0.001; esketamine: 0.647 ± 0.252 to 1.459 ± 0.264, P < 0.001). Conclusions Both type I and type II EEG microstate complexities are drug independent. Thus, the EEG microstate complexity measures that the authors proposed are promising tools for building state-related neural correlates of consciousness to quantify anesthetic-induced unconsciousness. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
科研通智能强力驱动
Strongly Powered by AbleSci AI