海山
地质学
岩石圈
火山作用
火山
热点(地质)
板块构造
古生物学
地幔柱
地球科学
地幔(地质学)
岩石圈挠曲
地震学
构造学
作者
Kevin Konrad,Andrea Balbas,Valerie Finlayson,Matthew G. Jackson,J. G. Konter,Anthony A.P. Koppers,Allison A. Price,Bernhard Steinberger
标识
DOI:10.1016/j.epsl.2023.118549
摘要
The ocean basins contain numerous volcanic ridges, seamounts and large igneous provinces (LIPs). Numerous studies have focused on the origin of seamount chains and LIPs but much less focus has been applied to understanding the genesis of large volcanic structures formed from a combination or series of volcanic drivers. Here we propose the term Oceanic Mid-plate Superstructures (OMS) to describe independent bathymetric swells or volcanic structures that are constructed through superimposing pulses of volcanism, over long time periods and from multiple sources. These sources can represent periods when the lithosphere drifted over different mantle plumes and/or experienced pulses of volcanism associated with shallow tectonic drivers (e.g. plate flexure; lithospheric extension). Here we focus on the Melanesian Border Plateau (MBP), one example of an OMS that has a complex and enigmatic origin. The MBP is a region of shallow Pacific lithosphere consisting of high volumes of volcanic guyots, ridges and seamounts that resides on the northern edge of the Vitiaz Lineament. Here we reconcile recently published constraints to build a comprehensive volcanic history of the MBP. The MBP was built through four distinct episodes: (1) Volcanism associated with the Louisville hotspot likely generating Robbie Ridge and some Cretaceous seamounts near the MBP. (2) Construction of oceanic islands and seamounts during the Eocene when the lithosphere passed over the Rurutu-Arago hotspot. (3) Reactivation of previous oceanic islands/seamounts and construction of new volcanos in the Miocene when the lithosphere passed over the Samoa hotspot. (4) Miocene to modern volcanism driven by lithospheric deformation and/or westward entrainment of enriched plume mantle due to toroidal mantle flow driven by the rollback of the Pacific plate beneath the Tonga trench. The combination of these processes is responsible for ∼222,000 km2 of intraplate volcanism in the MBP and indicates that this OMS was constructed from multiple volcanic drivers.
科研通智能强力驱动
Strongly Powered by AbleSci AI