Survival nomograms for vulvar squamous cell carcinoma based on the SEER database and a Chinese external validation cohort

列线图 医学 肿瘤科 队列 监测、流行病学和最终结果 外阴癌 比例危险模型 阶段(地层学) 流行病学 内科学 外阴癌 淋巴结 接收机工作特性 数据库 癌症 癌症登记处 古生物学 计算机科学 生物
作者
Zhongyi Zhao,Shihan Zhen,Ning Liu,Ding Ding,Dandan Zhang,Juan Kong
出处
期刊:International journal of gynaecology and obstetrics [Wiley]
卷期号:165 (3): 1130-1143
标识
DOI:10.1002/ijgo.15313
摘要

Abstract Objective The aim of study was to construct a nomogram to effectively predict the overall survival (OS) and cancer‐specific survival (CSS) for patients with vulvar squamous cell carcinoma (VSCC). Methods The training cohort consisted of 5405 patients with VSCC, extracted from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015. Eighty‐four patients with VSCC were selected from the disease database of the Shengjing Hospital of China Medical University from 2014 to 2020, and enrolled as the external validation cohort. Significant independent prognostic factors were identified using Cox regression analysis and used to develop nomograms to predict 1‐, 3‐, and 5‐year OS and CSS in patients with VSCC. Results The nomogram predicting OS was developed based on tumor size, histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, regional lymph node involvement, distant metastases, surgery, chemotherapy, age, and race. The nomogram for CSS was constructed using the similar factors, excluding race but including marital status. The nomogram for 1‐, 3‐, and 5‐year OS demonstrated robust performance with receiver operating characteristic curves (AUCs) exceeding 80% (0.86, 0.84, and 0.82), outperforming the FIGO staging alone (0.77, 0.75, and 0.72). Similarly, for CSS, our nomograms achieved larger AUCs of 0.89, 0.88, and 0.86 compared with FIGO staging alone (0.81, 0.79, and 0.78). Conclusion The nomograms more accurately predict prognosis than simple FIGO staging. Moreover, the nomograms developed in this study provide a convenient, operable, and reliable tool for individual assessment and clinical decision‐making for patients with VSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
东皇太憨完成签到,获得积分10
刚刚
刚刚
1秒前
润润轩轩发布了新的文献求助10
1秒前
1秒前
orixero应助韭黄采纳,获得10
2秒前
gnufgg完成签到,获得积分10
2秒前
科研通AI5应助tabor采纳,获得10
2秒前
2秒前
互助互惠互通完成签到,获得积分10
2秒前
脑洞疼应助ziyiziyi采纳,获得10
3秒前
3秒前
3秒前
屹舟完成签到,获得积分10
4秒前
zjudxn关注了科研通微信公众号
4秒前
5秒前
5秒前
科研通AI5应助hu970采纳,获得10
5秒前
5秒前
艺玲发布了新的文献求助10
6秒前
咚咚咚完成签到,获得积分10
6秒前
芋圆Z.完成签到,获得积分10
6秒前
atad2发布了新的文献求助10
6秒前
li梨完成签到,获得积分10
6秒前
7秒前
晏小敏完成签到,获得积分10
7秒前
爆米花应助风中寄云采纳,获得10
8秒前
屹舟发布了新的文献求助10
8秒前
Dou完成签到,获得积分10
8秒前
白泯完成签到,获得积分10
9秒前
1ssd发布了新的文献求助10
9秒前
667发布了新的文献求助10
9秒前
小二郎应助辰柒采纳,获得10
10秒前
11秒前
11秒前
clear完成签到,获得积分20
11秒前
11秒前
orixero应助congguitar采纳,获得10
11秒前
Evan完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759