Survival nomograms for vulvar squamous cell carcinoma based on the SEER database and a Chinese external validation cohort

列线图 医学 肿瘤科 队列 监测、流行病学和最终结果 外阴癌 比例危险模型 阶段(地层学) 流行病学 内科学 外阴癌 淋巴结 接收机工作特性 数据库 癌症 癌症登记处 古生物学 计算机科学 生物
作者
Zhongyi Zhao,Shihan Zhen,Ning Liu,Ding Ding,Dandan Zhang,Juan Kong
出处
期刊:International journal of gynaecology and obstetrics [Wiley]
卷期号:165 (3): 1130-1143 被引量:3
标识
DOI:10.1002/ijgo.15313
摘要

Abstract Objective The aim of study was to construct a nomogram to effectively predict the overall survival (OS) and cancer‐specific survival (CSS) for patients with vulvar squamous cell carcinoma (VSCC). Methods The training cohort consisted of 5405 patients with VSCC, extracted from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015. Eighty‐four patients with VSCC were selected from the disease database of the Shengjing Hospital of China Medical University from 2014 to 2020, and enrolled as the external validation cohort. Significant independent prognostic factors were identified using Cox regression analysis and used to develop nomograms to predict 1‐, 3‐, and 5‐year OS and CSS in patients with VSCC. Results The nomogram predicting OS was developed based on tumor size, histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, regional lymph node involvement, distant metastases, surgery, chemotherapy, age, and race. The nomogram for CSS was constructed using the similar factors, excluding race but including marital status. The nomogram for 1‐, 3‐, and 5‐year OS demonstrated robust performance with receiver operating characteristic curves (AUCs) exceeding 80% (0.86, 0.84, and 0.82), outperforming the FIGO staging alone (0.77, 0.75, and 0.72). Similarly, for CSS, our nomograms achieved larger AUCs of 0.89, 0.88, and 0.86 compared with FIGO staging alone (0.81, 0.79, and 0.78). Conclusion The nomograms more accurately predict prognosis than simple FIGO staging. Moreover, the nomograms developed in this study provide a convenient, operable, and reliable tool for individual assessment and clinical decision‐making for patients with VSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8RyzBZ发布了新的文献求助10
1秒前
Zenia发布了新的文献求助10
1秒前
Nell发布了新的文献求助10
2秒前
orixero应助橙酒采纳,获得10
2秒前
成就的咖啡完成签到 ,获得积分10
3秒前
FadeSv完成签到,获得积分10
3秒前
zhangyk发布了新的文献求助10
4秒前
科研通AI6应助高玉峰采纳,获得10
4秒前
优雅的笑阳完成签到,获得积分10
4秒前
酷炫的谷丝完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助coldzer0采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
伶俐的绝山关注了科研通微信公众号
9秒前
聪明的鞅发布了新的文献求助10
10秒前
haly完成签到 ,获得积分10
10秒前
忧郁的平安完成签到,获得积分10
11秒前
彭于晏应助高玉峰采纳,获得10
13秒前
13秒前
平常的苡完成签到,获得积分10
14秒前
清河海风完成签到,获得积分10
14秒前
15秒前
啦啦啦啦完成签到 ,获得积分10
16秒前
无限的晓蓝关注了科研通微信公众号
17秒前
zhazd发布了新的文献求助10
18秒前
19秒前
20秒前
橙酒发布了新的文献求助10
21秒前
nini应助出岫采纳,获得50
22秒前
杨佳莉完成签到,获得积分10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
核桃应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
大佛应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
yuyu发布了新的文献求助20
23秒前
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781