The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study

医学 邦费罗尼校正 人工智能 放射科 机器学习 计算机科学 统计 数学
作者
Xiaoquan Zeng,Lang Yang,Zehua Dong,Dexin Gong,Yanxia Li,Yunchao Deng,Hongliu Du,Xun Li,Y Xu,Chaijie Luo,Junxiao Wang,Tao Xiao,Chenxia Zhang,Yijie Zhu,Ruiqing Jiang,Liwen Yao,Lianlian Wu,Peng Jin,Honggang Yu
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (7): 1343-1351
标识
DOI:10.1111/jgh.16525
摘要

Abstract Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. Methods We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi‐supervised algorithms. Then we selected diagnosis‐related features through literature research and developed feature‐extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature‐extraction models and sole DL model were combined and inputted into seven machine‐learning (ML) based fitting‐diagnosis models. The optimal model was selected as ENDOANGEL‐WD (whitish‐diagnosis) and compared with endoscopists. Results Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P < 0.05) and higher accuracy than DL 2 (80.47%, Bonferroni adjusted P < 0.001) and was selected as ENDOANGEL‐WD. ENDOANGEL‐WD showed better accuracy compared with 10 endoscopists (75.70%, P < 0.001). Conclusions We developed a novel system ENDOANGEL‐WD combining domain knowledge and traditional DL to detect gastric whitish neoplasms. Adding domain knowledge improved the performance of traditional DL, which provided a novel solution for establishing diagnostic models for other rare diseases potentially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄lala完成签到,获得积分10
刚刚
Green完成签到,获得积分10
1秒前
Y8完成签到,获得积分10
1秒前
Hello应助韩hqf采纳,获得10
1秒前
2秒前
周学发布了新的文献求助10
2秒前
cff完成签到 ,获得积分10
2秒前
柳煜城完成签到,获得积分10
2秒前
000完成签到,获得积分10
2秒前
bk2020113458完成签到,获得积分10
3秒前
Dreamer完成签到,获得积分10
3秒前
不安海蓝完成签到,获得积分10
3秒前
3秒前
王正浩完成签到 ,获得积分10
3秒前
研途者完成签到,获得积分10
5秒前
5秒前
poab完成签到,获得积分10
5秒前
6秒前
草莓味的榴莲完成签到,获得积分10
7秒前
隐形曼青应助心灵美凝竹采纳,获得10
7秒前
8秒前
Ldq发布了新的文献求助20
9秒前
bluehand完成签到,获得积分10
10秒前
xu发布了新的文献求助10
10秒前
11秒前
Flyzhang完成签到,获得积分10
11秒前
huco完成签到,获得积分10
11秒前
科研通AI5应助辛勤的又亦采纳,获得10
11秒前
IvanLIu完成签到 ,获得积分10
12秒前
12秒前
科研通AI5应助小马采纳,获得10
13秒前
Chenzza完成签到,获得积分10
14秒前
ljw完成签到,获得积分10
14秒前
我爱小白贺完成签到,获得积分10
14秒前
CodeCraft应助辛勤的涵梅采纳,获得10
15秒前
韩hqf发布了新的文献求助10
15秒前
Miya_han完成签到,获得积分10
15秒前
Camellia发布了新的文献求助10
16秒前
罗_完成签到,获得积分0
17秒前
i1完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575248
求助须知:如何正确求助?哪些是违规求助? 3145236
关于积分的说明 9458771
捐赠科研通 2846503
什么是DOI,文献DOI怎么找? 1564890
邀请新用户注册赠送积分活动 732688
科研通“疑难数据库(出版商)”最低求助积分说明 719224