A deep transfer learning network with two classifiers based on sample selection for motor imagery brain-computer interface

脑-机接口 计算机科学 运动表象 人工智能 脑电图 稳健性(进化) 模式识别(心理学) 学习迁移 可视化 人工神经网络 特征选择 机器学习 化学 精神科 基因 心理学 生物化学
作者
Minmin Zheng,Yi-Wen Lin
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105786-105786 被引量:11
标识
DOI:10.1016/j.bspc.2023.105786
摘要

The non-stationary of Motor Imagery (MI) electroencephalogram (EEG) signals makes the traditional machine learning methods ineffective in EEG recognition across time, which limits the practicability of Motor Imagery Brain-computer Interface(MI BCI). Transfer learning makes the classification model of non-stationary MI EEG signals collected and trained at different times universal. In this paper, we proposed a new deep transfer neural network model that can effectively utilize labeled EEG data from previous times, thereby achieving good recognition performance for a small number of labeled EEG signals at the current time. Firstly, a filter bank was used to filter the original motor imagery EEG, and the filtered EEG retained the key features of each domain through the domain specific attention module. Then designed two domain adaptation modules simultaneously. The first domain adaptation module selected similar source domain data, and the second domain adaptation module minimized the difference between the source and target domains. At last, two adversarial classifiers were used to improve the accuracy and robustness of the classification. The results of average classification accuracy, feature visualization, and paired t-test on two public datasets all indicated that the classification performance of the proposed method was significantly higher than other comparison methods. The experimental results on two public datasets showed that the proposed method performed better than the comparison methods when classifying only a small number of labeled MI EEG data, and can achieve higher classification accuracy. This method has practical application value in the rehabilitation of stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心斋留下了新的社区评论
刚刚
Owen应助pipi采纳,获得10
刚刚
耍酷的白梦完成签到,获得积分10
1秒前
勤奋的凌翠完成签到 ,获得积分10
1秒前
bkagyin应助gy采纳,获得10
1秒前
1秒前
十二应助炒鸡小将采纳,获得10
2秒前
啊啊啊啊完成签到,获得积分10
2秒前
hyf567完成签到,获得积分10
3秒前
3秒前
3秒前
小柠完成签到,获得积分20
4秒前
zhaoyanan发布了新的文献求助10
4秒前
5秒前
feilei完成签到,获得积分10
5秒前
6秒前
Lorain发布了新的文献求助10
7秒前
7秒前
咕噜噜完成签到,获得积分10
7秒前
wangxiaoer完成签到,获得积分10
8秒前
遁一发布了新的文献求助10
8秒前
整齐冬瓜完成签到,获得积分10
8秒前
xhuryts完成签到,获得积分10
9秒前
轻松的璐啦啦完成签到 ,获得积分10
9秒前
9秒前
cindy完成签到,获得积分10
9秒前
10秒前
lbw完成签到 ,获得积分10
10秒前
在我梦里绕完成签到,获得积分10
10秒前
CYP完成签到 ,获得积分10
11秒前
Harlotte完成签到 ,获得积分10
11秒前
AQ完成签到,获得积分10
11秒前
11秒前
ark861023完成签到,获得积分10
12秒前
沐橘完成签到,获得积分20
12秒前
ningmengcao发布了新的文献求助10
12秒前
13秒前
flysky120完成签到,获得积分10
13秒前
Yong发布了新的文献求助10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478