列线图
可预测性
均方误差
散光
折射误差
均方预测误差
数学
小切口晶状体摘除术
人工智能
计算机科学
眼科
医学
机器学习
统计
光学
物理
眼病
角膜
角膜磨镶术
作者
Nikolaus Luft,N. Mohr,Elmar Spiegel,Hannah Marchi,Jakob Siedlecki,Lisa Harrant,Wolfgang J. Mayer,Martin Dirisamer,Siegfried Priglinger
标识
DOI:10.1080/02713683.2023.2282938
摘要
Purpose AI (artificial intelligence)-based methodologies have become established tools for researchers and physicians in the entire field of ophthalmology. However, the potential of AI to optimize the refractive outcome of keratorefractive surgery by means of machine learning (ML)-based nomograms has not been exhausted yet. In this study, we wanted to comprehensively compare state-of-the-art conventional nomograms for Small-Incision-Lenticule-Extraction (SMILE) with a novel ML-based nomogram regarding both their spherical and astigmatic predictability.
科研通智能强力驱动
Strongly Powered by AbleSci AI