Knowledge-Augmented Deep Learning and Its Applications: A Survey

可解释性 深度学习 计算机科学 分类学(生物学) 人工智能 领域知识 数据科学 领域(数学分析) 鉴定(生物学) 知识抽取 知识整合 知识表示与推理 代表(政治) 机器学习 政治 政治学 数学分析 生物 法学 植物 数学
作者
Zijun Cui,Tian Gao,Kartik Talamadupula,Qiang Ji
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:12
标识
DOI:10.1109/tnnls.2023.3338619
摘要

Deep learning models, though having achieved great success in many different fields over the past years, are usually data-hungry, fail to perform well on unseen samples, and lack interpretability. Different kinds of prior knowledge often exists in the target domain, and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to the taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of KADL. The thorough and critical reviews of numerous papers help not only understand current progress but also identify future directions for the research on KADL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆汁大面筋完成签到,获得积分10
刚刚
duosu完成签到,获得积分10
1秒前
狂野书易完成签到,获得积分10
1秒前
闷闷发布了新的文献求助10
3秒前
史鸿应助duosu采纳,获得10
3秒前
脑洞疼应助愉快的w采纳,获得10
4秒前
斯文败类应助万万采纳,获得10
5秒前
zfy关闭了zfy文献求助
8秒前
宋亚轩发布了新的文献求助10
9秒前
认真航空发布了新的文献求助10
10秒前
11秒前
矮小的长颈鹿完成签到,获得积分10
12秒前
闵疾完成签到,获得积分10
13秒前
周Z完成签到,获得积分10
14秒前
liu完成签到,获得积分20
14秒前
Lucas应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
pwy应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
21秒前
兜里没糖完成签到,获得积分10
21秒前
22秒前
赘婿应助liu采纳,获得10
23秒前
大个应助兜里没糖采纳,获得10
25秒前
搬运工完成签到,获得积分10
27秒前
duosu发布了新的文献求助10
28秒前
28秒前
29秒前
xl完成签到 ,获得积分10
30秒前
慧慧发布了新的文献求助10
31秒前
32秒前
桐桐应助贪玩绮南采纳,获得10
35秒前
youyou驳回了大个应助
35秒前
宋亚轩完成签到,获得积分10
35秒前
所所应助亦hcy采纳,获得10
35秒前
冷静新烟发布了新的文献求助10
36秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086