A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 宏观经济学 经济
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Wei Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (1): 44-56 被引量:11
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默松鼠完成签到,获得积分10
1秒前
自由如天完成签到,获得积分10
2秒前
无限的可乐完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
11完成签到 ,获得积分10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
萧萧应助科研通管家采纳,获得10
2秒前
cccjjjhhh完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
qqq完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
求助人员应助科研通管家采纳,获得10
3秒前
LIZHEN完成签到,获得积分10
3秒前
Larry1226完成签到,获得积分10
3秒前
Frank应助科研通管家采纳,获得10
4秒前
zgrmws应助科研通管家采纳,获得20
4秒前
求助人员应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
w尘完成签到 ,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Frank应助科研通管家采纳,获得10
4秒前
萧萧应助科研通管家采纳,获得10
5秒前
宜菏发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
甲壳虫发布了新的文献求助10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
blackddl应助科研通管家采纳,获得150
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
rayqiang完成签到,获得积分0
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131