已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 宏观经济学 经济
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Li Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (1): 44-56 被引量:2
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助IiIIIIiiIIIIii采纳,获得10
1秒前
3秒前
3秒前
SCI发发完成签到,获得积分20
3秒前
Lucas应助开朗满天采纳,获得10
6秒前
9秒前
10秒前
lsc发布了新的文献求助10
12秒前
12秒前
xukh完成签到,获得积分10
13秒前
不安的凡梦完成签到,获得积分10
14秒前
大白完成签到 ,获得积分10
15秒前
lyt完成签到 ,获得积分10
18秒前
Hello应助明理的踏歌采纳,获得10
20秒前
ffq发布了新的文献求助10
21秒前
ztr97完成签到,获得积分10
22秒前
22秒前
zealous完成签到,获得积分10
25秒前
汤健完成签到 ,获得积分10
28秒前
weiguangjing发布了新的文献求助30
29秒前
30秒前
33秒前
34秒前
36秒前
在水一方应助于冷松采纳,获得10
36秒前
36秒前
39秒前
39秒前
大模型应助科研通管家采纳,获得10
40秒前
老铁完成签到 ,获得积分10
40秒前
43秒前
LD发布了新的文献求助10
43秒前
Ruilin Quan完成签到,获得积分20
45秒前
46秒前
Ruilin Quan发布了新的文献求助10
49秒前
49秒前
49秒前
风时因絮发布了新的文献求助10
56秒前
andy发布了新的文献求助10
57秒前
IiIIIIiiIIIIii完成签到,获得积分10
57秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154688
求助须知:如何正确求助?哪些是违规求助? 2805501
关于积分的说明 7865044
捐赠科研通 2463690
什么是DOI,文献DOI怎么找? 1311521
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601821