亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 宏观经济学 经济
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Wei Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (1): 44-56 被引量:11
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
幽默的友容完成签到,获得积分10
9秒前
14秒前
英姑应助科研通管家采纳,获得10
15秒前
morena应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
英姑应助科研通管家采纳,获得10
15秒前
morena应助科研通管家采纳,获得10
15秒前
15秒前
打打应助碎碎采纳,获得10
16秒前
40秒前
倷倷完成签到 ,获得积分10
44秒前
48秒前
mi发布了新的文献求助10
53秒前
57秒前
Dietetykza5zl应助车访枫采纳,获得10
59秒前
疯狂老登发布了新的文献求助10
1分钟前
香蕉觅云应助疯狂老登采纳,获得10
1分钟前
xdmhv完成签到 ,获得积分10
1分钟前
ding应助mi采纳,获得10
1分钟前
科研通AI2S应助内向的绿采纳,获得10
1分钟前
yy完成签到 ,获得积分10
1分钟前
1分钟前
aaa完成签到,获得积分10
1分钟前
1分钟前
1分钟前
fantianhui完成签到 ,获得积分10
1分钟前
ymx完成签到,获得积分10
1分钟前
碧蓝太英发布了新的文献求助10
1分钟前
1分钟前
小刘完成签到,获得积分10
1分钟前
碧蓝太英完成签到,获得积分10
2分钟前
ccc完成签到 ,获得积分10
2分钟前
缓慢的初之完成签到,获得积分10
2分钟前
田様应助殷勤的雪曼采纳,获得10
2分钟前
刘倩完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788249
求助须知:如何正确求助?哪些是违规求助? 5705679
关于积分的说明 15473340
捐赠科研通 4916347
什么是DOI,文献DOI怎么找? 2646310
邀请新用户注册赠送积分活动 1593966
关于科研通互助平台的介绍 1548346