亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 宏观经济学 经济
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Wei Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (1): 44-56 被引量:11
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqq完成签到,获得积分0
1秒前
小葵发布了新的文献求助30
7秒前
研友_GZ3zRn完成签到 ,获得积分0
11秒前
heartyi完成签到 ,获得积分10
11秒前
38秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
李爱国应助科研通管家采纳,获得10
39秒前
lxl发布了新的文献求助10
43秒前
qiaorankongling完成签到 ,获得积分10
1分钟前
阉太狼完成签到,获得积分10
1分钟前
汉堡包应助lll采纳,获得10
1分钟前
1分钟前
牧沛凝发布了新的文献求助10
1分钟前
周娅敏完成签到,获得积分10
1分钟前
义气丹雪应助miniou采纳,获得10
1分钟前
1分钟前
1分钟前
周娅敏发布了新的文献求助30
1分钟前
梨园春完成签到,获得积分10
1分钟前
1分钟前
友好绿柏完成签到,获得积分10
1分钟前
yexu完成签到,获得积分10
1分钟前
lll发布了新的文献求助10
1分钟前
霓霓完成签到,获得积分10
1分钟前
lll完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
cheerfulsmurfs完成签到,获得积分10
2分钟前
微笑的匪完成签到,获得积分20
2分钟前
我是老大应助zeran采纳,获得10
2分钟前
张嘉雯完成签到 ,获得积分10
2分钟前
2分钟前
希望天下0贩的0应助JJ采纳,获得10
2分钟前
丘比特应助周娅敏采纳,获得10
2分钟前
航biubiu发布了新的文献求助10
2分钟前
2分钟前
梨园春发布了新的文献求助10
2分钟前
zeran发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
爆米花应助航biubiu采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799