亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 经济 宏观经济学
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Wei Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier BV]
卷期号:96 (1): 44-56 被引量:9
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助zc98采纳,获得10
3秒前
andrele发布了新的文献求助10
7秒前
元水云完成签到,获得积分10
24秒前
桦奕兮完成签到 ,获得积分10
43秒前
48秒前
nsc发布了新的文献求助10
52秒前
量子星尘发布了新的文献求助10
1分钟前
猪猪hero应助zc98采纳,获得10
1分钟前
1分钟前
勿惏发布了新的文献求助30
1分钟前
所所应助nsc采纳,获得30
1分钟前
1分钟前
1分钟前
scuter发布了新的文献求助10
1分钟前
scuter完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
nsc发布了新的文献求助30
2分钟前
bbdd2334发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
小马甲应助nsc采纳,获得10
2分钟前
2分钟前
Rabbit发布了新的文献求助10
2分钟前
2分钟前
3分钟前
kaka完成签到,获得积分10
3分钟前
nsc发布了新的文献求助10
3分钟前
思源应助nsc采纳,获得10
3分钟前
酷波er应助Rabbit采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Rabbit完成签到,获得积分10
3分钟前
4分钟前
nsc发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264