A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 宏观经济学 经济
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Wei Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (1): 44-56 被引量:11
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
贝star完成签到,获得积分10
4秒前
呆橘完成签到 ,获得积分10
4秒前
大气夜山完成签到 ,获得积分10
6秒前
天水张家辉完成签到,获得积分10
7秒前
Rambo完成签到 ,获得积分20
8秒前
kyz完成签到 ,获得积分10
8秒前
ranlan完成签到 ,获得积分10
9秒前
JOY完成签到 ,获得积分10
11秒前
鹰少完成签到,获得积分10
11秒前
糖炒栗子完成签到 ,获得积分10
11秒前
yellowonion完成签到 ,获得积分10
12秒前
12秒前
汤柏钧完成签到 ,获得积分10
16秒前
JY完成签到,获得积分10
16秒前
123456完成签到,获得积分20
16秒前
Linky完成签到 ,获得积分10
18秒前
5易6完成签到 ,获得积分10
20秒前
赘婿应助蓦然采纳,获得10
24秒前
留胡子的丹彤完成签到 ,获得积分10
24秒前
游01完成签到 ,获得积分0
25秒前
logolush完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
nan完成签到 ,获得积分10
30秒前
30秒前
负责的寒梅完成签到 ,获得积分10
32秒前
lalala完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
喜悦蚂蚁完成签到,获得积分10
35秒前
封印完成签到,获得积分10
37秒前
超大份雪碧完成签到 ,获得积分10
37秒前
美丽人生完成签到 ,获得积分10
39秒前
41秒前
xiang完成签到 ,获得积分10
47秒前
好像起风了完成签到,获得积分10
49秒前
芙瑞完成签到 ,获得积分10
50秒前
yafei完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
51秒前
胖胖完成签到 ,获得积分0
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677061
求助须知:如何正确求助?哪些是违规求助? 4970068
关于积分的说明 15159298
捐赠科研通 4836738
什么是DOI,文献DOI怎么找? 2591299
邀请新用户注册赠送积分活动 1544759
关于科研通互助平台的介绍 1502754