A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation

代谢组学 萧条(经济学) 机器学习 接收机工作特性 人工智能 医学 人口 计算机科学 生物信息学 生物 环境卫生 宏观经济学 经济
作者
Simeng Ma,Xin‐hui Xie,Zipeng Deng,Wei Wang,Dan Xiang,Lihua Yao,Lijun Kang,Shu‐xian Xu,Huiling Wang,Gaohua Wang,Jun Yang,Zhongchun Liu
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (1): 44-56 被引量:11
标识
DOI:10.1016/j.biopsych.2023.12.015
摘要

Background There have been many metabolomics studies of depression, but these have been limited by their scale. A comprehensive in silico analysis of global metabolite levels in large populations could provide robust insights into the pathological mechanisms underlying depression and candidate clinical biomarkers. Methods Depression-associated metabolomics was studied in two datasets from the UK Biobank database: participants with lifetime depression (n=123,459) and those with current depression (n=94,921). The Whitehall II cohort (n=4,744) was used for external validation. CatBoost machine learning was used for modeling, and Shapley Additive Explanations were used to interpret the model. Five-fold cross-validation was used to validate model performance, training the model on three of the five sets with the remaining two for validation and testing, respectively. The diagnostic performance was assessed using area under receiver operating characteristic (AUC) curves. Results Twenty-four significantly associated metabolic biomarkers were identified in the lifetime depression and current depression datasets and sex-specific analyses, 12 of which overlapped in the two datasets. The addition of metabolic features slightly improved the performance of a diagnostic model using traditional (non-metabolomic) risk factors alone (lifetime depression: AUCs 0.655 versus 0.658 with metabolomics; current depression: AUCs 0.711 versus 0.716 with metabolomics). Conclusions The machine learning model identified 24 metabolic biomarkers associated with depression. If validated, metabolic biomarkers may have future clinical applications as supplementary information to guide early and population-based depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hokin33完成签到,获得积分10
1秒前
小马甲应助菜菜mm采纳,获得10
1秒前
jyk发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
杏杏发布了新的文献求助10
3秒前
笨笨忘幽关注了科研通微信公众号
3秒前
张一一完成签到,获得积分10
4秒前
惜肉龟发布了新的文献求助10
4秒前
4秒前
5秒前
aloopp发布了新的文献求助10
5秒前
5秒前
慕青应助鳗鱼铸海采纳,获得10
6秒前
乐乐应助英俊皮卡丘采纳,获得10
6秒前
思源应助聪慧的雪糕采纳,获得10
7秒前
Ava应助高天雨采纳,获得20
7秒前
yyang发布了新的文献求助10
7秒前
xn发布了新的文献求助10
8秒前
XinChenLee完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助沉静的代桃采纳,获得10
10秒前
10秒前
852应助坦率铅笔采纳,获得10
10秒前
10秒前
归尘应助sunburst采纳,获得30
11秒前
哚圆圆完成签到,获得积分20
11秒前
mraze发布了新的文献求助10
12秒前
深情安青应助圣诞节采纳,获得10
12秒前
12秒前
paobashan发布了新的文献求助30
13秒前
虚幻唯雪完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
哚圆圆发布了新的文献求助10
14秒前
15秒前
tianquanbi发布了新的文献求助10
15秒前
李爱国应助eywct采纳,获得10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300