Using a Function-First “Scout Fragment”-Based Approach to Develop Allosteric Covalent Inhibitors of Conformationally Dynamic Helicase Mechanoenzymes

解旋酶 可药性 化学 变构调节 RNA解旋酶A 计算生物学 功能(生物学) eIF4A标准 生物化学 DNA 化学生物学 核糖核酸 遗传学 核糖体 生物 基因
作者
J Ramsey,Patrick M. M. Shelton,Tyler K. Heiss,Paul Dominic B. Olinares,Lauren E. Vostal,Heather Soileau,Michael Grasso,Sara W. Casebeer,Stephanie M. Adaniya,Michael B. Miller,Shan Sun,David J. Huggins,Robert W. Myers,Brian T. Chait,Ekaterina V. Vinogradova,Tarun M. Kapoor
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (1): 62-67 被引量:3
标识
DOI:10.1021/jacs.3c10581
摘要

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助安白采纳,获得10
1秒前
NexusExplorer应助Su采纳,获得10
4秒前
乐乐应助健忘的小懒虫采纳,获得50
4秒前
ppxdd发布了新的文献求助10
4秒前
向雫发布了新的文献求助10
5秒前
6秒前
Akim应助精明芒果采纳,获得10
6秒前
潮哈哈耶完成签到,获得积分10
6秒前
研友_VZG7GZ应助myheat采纳,获得10
6秒前
LLL完成签到,获得积分10
6秒前
TYJ完成签到,获得积分20
7秒前
积极汉堡关注了科研通微信公众号
9秒前
JamesPei应助哎呀妈呀采纳,获得10
9秒前
科研通AI5应助尊敬的青易采纳,获得10
11秒前
You发布了新的文献求助10
13秒前
13秒前
14秒前
SoHottt完成签到,获得积分10
15秒前
小贾完成签到 ,获得积分10
16秒前
幸福果汁完成签到,获得积分10
16秒前
tzy完成签到,获得积分10
16秒前
哎呀妈呀发布了新的文献求助10
17秒前
19秒前
19秒前
尊敬的青易完成签到,获得积分10
20秒前
zuizui发布了新的文献求助10
20秒前
23秒前
哎呀妈呀完成签到,获得积分10
23秒前
Ava应助You采纳,获得10
24秒前
24秒前
25秒前
26秒前
蓝齐儿完成签到,获得积分10
26秒前
好运常在完成签到 ,获得积分10
30秒前
淳于忆曼完成签到,获得积分10
35秒前
35秒前
35秒前
37秒前
wish完成签到 ,获得积分10
38秒前
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199