作者
Reda M. El‐Shishtawy,Yasser M. Al Angari,Maha M. Alotaibi,Yaaser Q. Almulaiky
摘要
An innovative approach for immobilizing α-amylase was used in this investigation. The acrylic fabric was first treated with hexamethylene diamine (HMDA) and then coated with copper ions that were later reduced to copper nanoparticles (CuNPs). The corresponding materials obtained, Cu(II)@HMDA-TA and CuNPs@HMDA-TA, were employed as carriers for α-amylase, respectively. The structural and morphological characteristics of the produced support matrices before and after immobilization were assessed using various techniques, including FTIR, SEM, EDX, TG/DTG, DSC, and zeta potential. The immobilized α-amylase exhibited the highest level of activity at pH 7.0, with immobilization yields observed for CuNPs@HMDA-TA (81.7 %) (60 unit/g support) followed by Cu(II)@HMDA-TA (71.7 %) (49 unit/g support) and 75 % and 61 % of activity yields, and 91.7 % and 85 % of immobilization efficiency, respectively. Meanwhile, biochemical characterizations of the activity of the soluble and immobilized enzymes were carried out and compared. Optimal temperature, pH, kinetics, storage stability, and reusability parameters were optimized for immobilized enzyme activity. The optimal pH and temperature were recorded as 6.0 and 50 °C for soluble α-amylase while the two forms of immobilized α-amylase exhibit a broad pH of 6.0-7.0 and optimal temperature at 60 °C. After recycling 15 times, the immobilized α-amylase on CuNPs@HMDA-TA and Cu(II)@HMDA-TA preserved 63 % and 52 % of their activities, respectively. The two forms of immobilized α-amylase displayed high stability when stored for 6 weeks and preserved 85 % and 76 % of their activities, respectively. Km values were calculated as 1.22, 1.39, and 1.84 mg/mL for soluble, immobilized enzymes on CuNPs@HMDA-TA, and Cu(II)@HMDA-TA, and Vmax values were calculated as 36.25, 29.68, and 21.57 μmol/mL/min, respectively. The total phenolic contents of maize kernels improved 1.4 ± 0.01 fold after treatment by two immobilized α-amylases.