In-gap states and strain-tuned band convergence in layered structure trivalent iridate K0.75Na0.25IrO2

带隙 凝聚态物理 材料科学 格子(音乐) 电子能带结构 离子 电子结构 热电效应 联轴节(管道) 碱金属 八面体 化学物理 结晶学 晶体结构 物理 化学 热力学 量子力学 冶金 声学
作者
Xujia Gong,Carmine Autieri,Huanfu Zhou,Jiafeng Ma,Xiaohong Tang,Xiaojun Zheng,Xing Ming
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (9): 6857-6866 被引量:1
标识
DOI:10.1039/d2cp04806j
摘要

Iridium oxides (iridates) provide a good platform to study the delicate interplay between spin-orbit coupling (SOC) interactions, electron correlation effects, Hund's coupling and lattice degrees of freedom. An overwhelming number of investigations primarily focus on tetravalent (Ir4+, 5d5) and pentavalent (Ir5+, 5d4) iridates, and far less attention has been paid to iridates with other valence states. Here, we pay our attention to a less-explored trivalent (Ir3+, 5d6) iridate, K0.75Na0.25IrO2, crystallizing in a triangular lattice with edge-sharing IrO6 octahedra and alkali metal ion intercalated [IrO2]- layers, offering a good platform to explore the interplay between different degrees of freedom. We theoretically determine the preferred occupied positions of the alkali metal ions from energetic viewpoints and reproduce the experimentally observed semiconducting behavior and nonmagnetic (NM) properties of K0.75Na0.25IrO2. The SOC interactions play a critical role in the band dispersion, resulting in NM Jeff = 0 states. More intriguingly, our electronic structure not only uncovers the presence of intrinsic in-gap states and nearly free electron character for the conduction band minimum, but also explains the abnormally low activation energy in K0.75Na0.25IrO2. Particularly, the band edge can be effectively modulated by mechanical strain, and the in-gap states feature enhanced band-convergence characteristics by 6% compressive strain, which will greatly enhance the electrical conductivity of K0.75Na0.25IrO2. The present work sheds new light on the unconventional electronic structures of trivalent iridates, indicating their promising application as a nanoelectronic and thermoelectric material, which will attract extensive interest and stimulate experimental works to further understand the unprecedented electronic structures and exploit potential applications of the triangular trivalent iridate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹斟酒完成签到,获得积分10
1秒前
1秒前
1秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
1秒前
1秒前
1秒前
深情安青应助美女采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
葛辉辉完成签到,获得积分10
3秒前
kangkang发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
SciGPT应助ye采纳,获得10
5秒前
乐乐应助自信晟睿采纳,获得10
5秒前
葛辉辉发布了新的文献求助10
5秒前
6秒前
Wxd0211完成签到,获得积分20
6秒前
nemo完成签到,获得积分10
7秒前
小橙子发布了新的文献求助10
7秒前
lxh2424发布了新的文献求助30
7秒前
万能图书馆应助YHL采纳,获得10
7秒前
请叫我风吹麦浪应助hu970采纳,获得10
7秒前
传统的慕儿完成签到,获得积分10
8秒前
aurora完成签到 ,获得积分10
8秒前
8秒前
领导范儿应助gyt采纳,获得10
10秒前
麦麦发布了新的文献求助10
10秒前
晴天完成签到,获得积分10
10秒前
龙歪歪完成签到 ,获得积分20
11秒前
Crush完成签到,获得积分0
11秒前
苏照杭应助kydd采纳,获得10
12秒前
英姑应助研友_8yN60L采纳,获得10
12秒前
学术蠕虫完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
中心湖小海棠完成签到,获得积分10
14秒前
Orange应助new_vision采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762