In-gap states and strain-tuned band convergence in layered structure trivalent iridate K0.75Na0.25IrO2

带隙 凝聚态物理 材料科学 格子(音乐) 电子能带结构 离子 电子结构 热电效应 联轴节(管道) 碱金属 八面体 化学物理 结晶学 晶体结构 物理 化学 热力学 量子力学 声学 冶金
作者
Xujia Gong,Carmine Autieri,Huanfu Zhou,Jiafeng Ma,Xiaohong Tang,Xiaojun Zheng,Xing Ming
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (9): 6857-6866 被引量:1
标识
DOI:10.1039/d2cp04806j
摘要

Iridium oxides (iridates) provide a good platform to study the delicate interplay between spin-orbit coupling (SOC) interactions, electron correlation effects, Hund's coupling and lattice degrees of freedom. An overwhelming number of investigations primarily focus on tetravalent (Ir4+, 5d5) and pentavalent (Ir5+, 5d4) iridates, and far less attention has been paid to iridates with other valence states. Here, we pay our attention to a less-explored trivalent (Ir3+, 5d6) iridate, K0.75Na0.25IrO2, crystallizing in a triangular lattice with edge-sharing IrO6 octahedra and alkali metal ion intercalated [IrO2]- layers, offering a good platform to explore the interplay between different degrees of freedom. We theoretically determine the preferred occupied positions of the alkali metal ions from energetic viewpoints and reproduce the experimentally observed semiconducting behavior and nonmagnetic (NM) properties of K0.75Na0.25IrO2. The SOC interactions play a critical role in the band dispersion, resulting in NM Jeff = 0 states. More intriguingly, our electronic structure not only uncovers the presence of intrinsic in-gap states and nearly free electron character for the conduction band minimum, but also explains the abnormally low activation energy in K0.75Na0.25IrO2. Particularly, the band edge can be effectively modulated by mechanical strain, and the in-gap states feature enhanced band-convergence characteristics by 6% compressive strain, which will greatly enhance the electrical conductivity of K0.75Na0.25IrO2. The present work sheds new light on the unconventional electronic structures of trivalent iridates, indicating their promising application as a nanoelectronic and thermoelectric material, which will attract extensive interest and stimulate experimental works to further understand the unprecedented electronic structures and exploit potential applications of the triangular trivalent iridate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花火易逝完成签到,获得积分10
1秒前
1秒前
星辰大海应助婧婧采纳,获得10
2秒前
sunny111完成签到,获得积分10
2秒前
窗窗窗雨完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
斯文败类应助圆了个甜采纳,获得10
3秒前
Criminology34应助缥缈千风采纳,获得10
4秒前
量子星尘发布了新的文献求助30
4秒前
Khan完成签到,获得积分20
4秒前
上官若男应助huang采纳,获得10
5秒前
誉川发布了新的文献求助10
7秒前
7秒前
MechelleLu完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
李木槿完成签到 ,获得积分10
10秒前
11秒前
独特的追命完成签到,获得积分10
11秒前
12秒前
汉堡包应助江峰采纳,获得10
12秒前
说几句发布了新的文献求助10
12秒前
小陀螺完成签到,获得积分10
13秒前
八百标兵完成签到,获得积分10
13秒前
Aman完成签到,获得积分10
14秒前
15秒前
15秒前
颜缭完成签到,获得积分20
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
实验耗材完成签到 ,获得积分10
18秒前
18秒前
是谁还没睡完成签到 ,获得积分10
18秒前
haipronl应助CNS冲采纳,获得50
18秒前
良仔完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
橘子味的橙子完成签到 ,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749457
求助须知:如何正确求助?哪些是违规求助? 5458879
关于积分的说明 15363685
捐赠科研通 4888916
什么是DOI,文献DOI怎么找? 2628764
邀请新用户注册赠送积分活动 1577073
关于科研通互助平台的介绍 1533746