Assessing Environmental Oil Spill Based on Fluorescence Images of Water Samples and Deep Learning

环境科学 深度学习 采出水 计算机科学 人工智能 石油工程 卷积神经网络 机器学习 工艺工程 环境工程 工程类
作者
D. P. Liu,M. Liu,G. Y. Sun,Z. Q. Zhou,D. L. Wang,F. He,J. X. Li,J. C. Xie,R. Gettler,E. Brunson,J. Steevens,D. Xu
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
标识
DOI:10.3808/jei.202300491
摘要

Measuring oil concentration in the aquatic environment is essential for determining the potential exposure, risk, or injury for oil spill response and natural resource damage assessment. Conventional analytical chemistry methods require samples to be collected in the field, shipped, and processed in the laboratory, which is also rather time-consuming, laborious, and costly. For rapid field response immediately after a spill, there is a need to estimate oil concentration in near real time. To make the oil analysis more portable, fast, and cost effective, we developed a plug-and-play device and a deep learning model to assess oil levels in water using fluorescent images of water samples. We constructed a 3D-printed device to collect fluorescent images of solvent-extracted water samples using an iPhone. We prepared approximately 1,300 samples of oil at different concentrations to train and test the deep learning model. The model comprises a convolutional neural network and a novel module of histogram bottleneck block with an attention mechanism to exploit the spectral features found in low-contrast images. This model predicts the oil concentration in weight per volume based on fluorescence image. We devised a confidence interval estimator by combining gradient boosting and polymodal regressor to provide a confidence assessment of our results. Our model achieved sufficient accuracy to predict oil levels for most environmental applications. We plan to improve the device and iPhone application as a near-real-time tool for oil spill responders to measure oil in water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷萤完成签到 ,获得积分10
1秒前
大个应助小何采纳,获得10
1秒前
科研小白鼠完成签到 ,获得积分10
1秒前
2秒前
啦啦小王~完成签到,获得积分10
2秒前
Nancy发布了新的文献求助10
2秒前
nsk完成签到,获得积分20
3秒前
热心的语梦完成签到,获得积分10
3秒前
4秒前
4秒前
赘婿应助42采纳,获得10
5秒前
闵凝竹完成签到 ,获得积分10
5秒前
5秒前
小马想毕业完成签到,获得积分10
6秒前
橙子发布了新的文献求助10
6秒前
Wt完成签到 ,获得积分10
6秒前
胆XIAOXING完成签到,获得积分10
7秒前
懵懂的土豆完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
11秒前
谷策完成签到,获得积分10
11秒前
忧郁凌波发布了新的文献求助10
11秒前
明天过后完成签到,获得积分10
11秒前
战善完成签到,获得积分10
12秒前
12秒前
杨e关注了科研通微信公众号
13秒前
所所应助cbbb采纳,获得10
13秒前
天天快乐应助Sunshine采纳,获得10
13秒前
13秒前
FashionBoy应助seven采纳,获得10
14秒前
谷策发布了新的文献求助10
14秒前
Jasper应助Nancy采纳,获得10
14秒前
科目三应助小犬采纳,获得10
14秒前
Fiona发布了新的文献求助10
14秒前
酸奶球完成签到 ,获得积分10
16秒前
科研小白鼠关注了科研通微信公众号
16秒前
情怀应助科研通管家采纳,获得10
16秒前
大模型应助Yv采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655