Assessing Environmental Oil Spill Based on Fluorescence Images of Water Samples and Deep Learning

环境科学 深度学习 采出水 计算机科学 人工智能 石油工程 卷积神经网络 石油 机器学习 工艺工程 环境工程 工程类 化学 有机化学
作者
D. P. Liu,Ming Liu,Guangyu Sun,Zhiguo Zhou,Dongfang Wang,Fang He,Jinxing Li,Juan Xie,Ryan Gettler,Eric L. Brunson,Jeffery A. Steevens,Dongkuan Xu
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:10
标识
DOI:10.3808/jei.202300491
摘要

Measuring oil concentration in the aquatic environment is essential for determining the potential exposure, risk, or injury for oil spill response and natural resource damage assessment. Conventional analytical chemistry methods require samples to be collected in the field, shipped, and processed in the laboratory, which is also rather time-consuming, laborious, and costly. For rapid field response immediately after a spill, there is a need to estimate oil concentration in near real time. To make the oil analysis more portable, fast, and cost effective, we developed a plug-and-play device and a deep learning model to assess oil levels in water using fluorescent images of water samples. We constructed a 3D-printed device to collect fluorescent images of solvent-extracted water samples using an iPhone. We prepared approximately 1,300 samples of oil at different concentrations to train and test the deep learning model. The model comprises a convolutional neural network and a novel module of histogram bottleneck block with an attention mechanism to exploit the spectral features found in low-contrast images. This model predicts the oil concentration in weight per volume based on fluorescence image. We devised a confidence interval estimator by combining gradient boosting and polymodal regressor to provide a confidence assessment of our results. Our model achieved sufficient accuracy to predict oil levels for most environmental applications. We plan to improve the device and iPhone application as a near-real-time tool for oil spill responders to measure oil in water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助罗一斩采纳,获得10
刚刚
2秒前
wykang发布了新的文献求助10
2秒前
安an完成签到,获得积分10
3秒前
李健的小迷弟应助zhaoyuyuan采纳,获得10
3秒前
汉堡包应助天天采纳,获得10
3秒前
上官若男应助小李博士采纳,获得10
4秒前
语嘘嘘完成签到,获得积分10
4秒前
5秒前
XYZ完成签到,获得积分20
6秒前
6秒前
7秒前
qqqqqq应助淮h采纳,获得10
8秒前
请问请问完成签到,获得积分20
9秒前
hawz完成签到,获得积分20
9秒前
CHN完成签到 ,获得积分10
10秒前
10秒前
请问请问发布了新的文献求助10
12秒前
13秒前
13秒前
林文隆关注了科研通微信公众号
15秒前
Zhukic发布了新的文献求助10
15秒前
SciGPT应助ranran采纳,获得10
15秒前
杨洋完成签到,获得积分10
15秒前
NexusExplorer应助葡萄嘎嘣采纳,获得10
18秒前
云水青澜完成签到,获得积分10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
彳亍1117应助科研通管家采纳,获得20
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
LaTeXer应助核桃采纳,获得50
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571