Assessing Environmental Oil Spill Based on Fluorescence Images of Water Samples and Deep Learning

环境科学 深度学习 采出水 计算机科学 人工智能 石油工程 卷积神经网络 石油 机器学习 工艺工程 环境工程 工程类 化学 有机化学
作者
D. P. Liu,Ming Liu,Guangyu Sun,Zhiguo Zhou,Dongfang Wang,Fang He,Jinxing Li,Juan Xie,Ryan Gettler,Eric L. Brunson,Jeffery A. Steevens,Dongkuan Xu
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:10
标识
DOI:10.3808/jei.202300491
摘要

Measuring oil concentration in the aquatic environment is essential for determining the potential exposure, risk, or injury for oil spill response and natural resource damage assessment. Conventional analytical chemistry methods require samples to be collected in the field, shipped, and processed in the laboratory, which is also rather time-consuming, laborious, and costly. For rapid field response immediately after a spill, there is a need to estimate oil concentration in near real time. To make the oil analysis more portable, fast, and cost effective, we developed a plug-and-play device and a deep learning model to assess oil levels in water using fluorescent images of water samples. We constructed a 3D-printed device to collect fluorescent images of solvent-extracted water samples using an iPhone. We prepared approximately 1,300 samples of oil at different concentrations to train and test the deep learning model. The model comprises a convolutional neural network and a novel module of histogram bottleneck block with an attention mechanism to exploit the spectral features found in low-contrast images. This model predicts the oil concentration in weight per volume based on fluorescence image. We devised a confidence interval estimator by combining gradient boosting and polymodal regressor to provide a confidence assessment of our results. Our model achieved sufficient accuracy to predict oil levels for most environmental applications. We plan to improve the device and iPhone application as a near-real-time tool for oil spill responders to measure oil in water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ksharp10完成签到,获得积分10
1秒前
大野发布了新的文献求助10
2秒前
2秒前
2秒前
sda完成签到,获得积分10
2秒前
明理如凡完成签到,获得积分10
3秒前
科研通AI6应助Double采纳,获得10
4秒前
pokexuejiao完成签到,获得积分10
4秒前
李雅欣发布了新的文献求助10
4秒前
完美世界应助分隔符采纳,获得10
4秒前
Fernweh完成签到,获得积分20
5秒前
shouying发布了新的文献求助10
5秒前
夜染完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
huangxiaomei111完成签到,获得积分10
6秒前
6秒前
小落完成签到,获得积分10
7秒前
我是弱智先帮我完成签到,获得积分10
7秒前
李爱国应助叶祥采纳,获得10
7秒前
gyh完成签到,获得积分20
7秒前
王澄橙发布了新的文献求助50
7秒前
邓娅琴发布了新的文献求助10
8秒前
9秒前
彭于晏应助ftyun采纳,获得10
10秒前
Moro完成签到,获得积分10
10秒前
12秒前
大野完成签到,获得积分10
12秒前
繁星背后完成签到 ,获得积分10
12秒前
wei完成签到,获得积分10
12秒前
CipherSage应助憨憨采纳,获得10
13秒前
CipherSage应助gyh采纳,获得10
13秒前
14秒前
科研通AI6应助gkw采纳,获得10
15秒前
锐意发布了新的文献求助10
15秒前
丁森杰发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
科研通AI6应助靓丽的如天采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728