非谐性
声子
超晶格
玻尔兹曼方程
热导率
凝聚态物理
热电材料
热电效应
分子动力学
材料科学
声子散射
格子(音乐)
散射
热的
物理
热力学
光学
量子力学
声学
作者
Pan Zhang,Mi Qin,Zhenhua Zhang,Dan Jin,Yong Liu,Ziyu Wang,Zhihong Lu,Jing Shi,Rui Xiong
摘要
Phonon thermal transport is a key feature for the operation of thermoelectric materials, but it is challenging to accurately calculate the thermal conductivity of materials with strong anharmonicity or large cells. In this work, a deep neural network potential (NNP) is developed using a dataset based on density functional theory (DFT) and applied to describe the lattice dynamics of Sb2Te3 and Bi2Te3/Sb2Te3 superlattices. The lattice thermal conductivities of Sb2Te3 are first predicted using equilibrium molecular dynamics (EMD) simulations combined with an NNP and the results match well with experimental values. Then, through further exploration of weighted phase spaces and the Grüneisen parameter, we find that there is a stronger anharmonicity in the out-of-plane direction in Sb2Te3, which is the reason why the thermal conductivities are overestimated more in the out-of-plane direction than in the in-plane direction by solving the phonon Boltzmann transport equation (BTE) with only three-phonon scattering processes being considered. More importantly, the lattice thermal conductivities of Bi2Te3/Sb2Te3 superlattices with different periods are accurately predicted using non-equilibrium molecular dynamics (NEMD) simulations together with an NNP, which serves as a good example to explore the thermal transport physics of superlattices using a deep neural network potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI