阿兹屈南
最小抑制浓度
微生物学
生物
抗生素
抗生素耐药性
亚胺培南
作者
Juan Carlos Vázquez-Ucha,Isaac Alonso,Paula Guijarro-Sánchez,Cristina Lasarte-Monterrubio,Laura Álvarez-Fraga,Arnau Cendón-Esteve,Michelle Outeda-García,Romina Maceiras,Andrea Peña-Escolano,Marta Martínez-Guitián,Jorge Arca-Suárez,Germán Bou,Alejandro Beceiro
标识
DOI:10.1016/j.ijantimicag.2023.106738
摘要
Metallo-β-lactamase (MBL)-producing Enterobacterales are of particular concern because they are widely disseminated and difficult to treat, being resistant to almost all β-lactam antibiotics. Aztreonam is not hydrolysed by MBLs but is labile to serine β-lactamases (SBLs), which are usually co-produced by MBL-producing Enterobacterales. This study investigated the activity of aztreonam in combination with novel β-lactamase inhibitors (BLIs) against a national multi-centre study collection of strains co-producing MBLs and SBLs. Fifty-five clinical isolates co-producing MBLs (41 VIM producers, 10 NDM producers and 4 IMP producers) and SBLs were selected, and whole-genome sequencing (WGS) was performed. The minimum inhibitory concentration (MIC) values of aztreonam, aztreonam/avibactam, aztreonam/relebactam, aztreonam/zidebactam, aztreonam/taniborbactam, aztreonam/vaborbactam and aztreonam/enmetazobactam were determined. β-lactam/BLI resistance mechanisms were analysed by WGS. All BLIs decreased the MIC values of aztreonam for strains that were not susceptible to aztreonam. Aztreonam/zidebactam (MIC ≤1 mg/L for 96.4% of isolates), aztreonam/avibactam (MIC ≤1 mg/L for 92.7% of isolates) and aztreonam/taniborbactam (MIC ≤1 mg/L for 87.3 % of isolates) were the most active combinations. For other aztreonam/BLI combinations, 50-70% of the isolates yielded MIC values ≤1 mg/L. WGS data revealed that mutations in PBP3, defective OmpE35/OmpK35 porins, and the presence of extended-spectrum β-lactamases and class C β-lactamases were some of the resistance mechanisms involved in reduced susceptibility to aztreonam/BLIs. Combinations of aztreonam with new BLIs show promising activity against Enterobacterales co-producing MBLs and SBLs, particularly aztreonam/zidebactam, aztreonam/avibactam and aztreonam/taniborbactam. The present results show that these novel drugs may represent innovative therapeutic strategies by their use in yet-unexplored combinations as solutions for difficult-to-treat infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI