How does population aging affect urban green transition development in China? An empirical analysis based on spatial econometric model

中国 北京 人口 经济地理学 星团(航天器) 地理 人口学 计算机科学 社会学 考古 程序设计语言
作者
Yujie Wang,Hong Chen,Ruyin Long,Lei Wang,Menghua Yang,Qingqing Sun
出处
期刊:Environmental Impact Assessment Review [Elsevier]
卷期号:99: 107027-107027 被引量:5
标识
DOI:10.1016/j.eiar.2022.107027
摘要

Population aging plays a crucial role in urban green transformation development, and it is of great theoretical and practical significance to clarify the relationship between the two. Based on systematically sorting out the connotation of green transformational development (GTD), this study constructed a framework system for urban GTD, measured the GTD performance of 284 prefecture-level and above cities in China using the EW-TOPSIS model, and further explored the impact effects and mechanisms of population aging on urban GTD in China using the ESDA method, the spatial Durbin model and the mediating effect model. The main findings are as follows. (1) The average urban GTD performance in China from 2009 to 2019 showed a steady upward trend, but was still at a low level. Overall, the spatial distribution pattern of GTD performance showed the characteristics of “south > north” and “east > west”, mainly showing the evolution characteristics of the Yangtze River Delta city cluster, the Pearl River Delta city cluster, and the Beijing-Tianjin-Hebei city cluster as the core high-value areas gradually decreasing outward. (2) The impact of population aging on urban GTD had nonlinear and spillover characteristics, that is, population aging also impacted urban GTD in surrounding areas. Specifically, the increase of population aging in a city had a significant “U” shape effect on the GTD of that city, but the effect on the GTD of neighboring cities had an inverted “U” shape effect. (3) In terms of impact mechanism, population aging positively affected urban GTD by increasing human resources and technological innovation, while the transmission path of reducing labor supply had not yet come into play. Finally, according to the research findings, targeted recommendations are put forward.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pgojpogk发布了新的文献求助10
刚刚
zxh发布了新的文献求助10
刚刚
共享精神应助JF123_采纳,获得10
1秒前
1秒前
李木槿发布了新的文献求助10
1秒前
好好应助天月采纳,获得10
1秒前
无花果应助甩看文献采纳,获得10
1秒前
123456完成签到,获得积分10
2秒前
君子兰完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
情怀应助积极的音响采纳,获得10
2秒前
2秒前
huangrui完成签到 ,获得积分10
2秒前
Lucas应助lsy采纳,获得10
2秒前
闫晓美完成签到,获得积分10
2秒前
小手冰凉完成签到,获得积分10
3秒前
小困困朱完成签到,获得积分20
3秒前
小青椒应助Jameszhuo采纳,获得10
3秒前
小二郎应助lidan_2008采纳,获得10
3秒前
4秒前
小糊涂仙发布了新的文献求助10
4秒前
4秒前
精明的蜗牛完成签到 ,获得积分10
4秒前
小航爱学习完成签到,获得积分10
4秒前
Hu发布了新的文献求助10
5秒前
许星星发布了新的文献求助10
5秒前
if奖完成签到,获得积分10
5秒前
lxj完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
闫晓美发布了新的文献求助10
6秒前
byron发布了新的文献求助10
6秒前
7秒前
7秒前
程式完成签到,获得积分10
7秒前
zhangzpe发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919