How does population aging affect urban green transition development in China? An empirical analysis based on spatial econometric model

中国 北京 人口 经济地理学 星团(航天器) 地理 人口学 计算机科学 社会学 考古 程序设计语言
作者
Yujie Wang,Hong Chen,Ruyin Long,Lei Wang,Menghua Yang,Qingqing Sun
出处
期刊:Environmental Impact Assessment Review [Elsevier BV]
卷期号:99: 107027-107027 被引量:5
标识
DOI:10.1016/j.eiar.2022.107027
摘要

Population aging plays a crucial role in urban green transformation development, and it is of great theoretical and practical significance to clarify the relationship between the two. Based on systematically sorting out the connotation of green transformational development (GTD), this study constructed a framework system for urban GTD, measured the GTD performance of 284 prefecture-level and above cities in China using the EW-TOPSIS model, and further explored the impact effects and mechanisms of population aging on urban GTD in China using the ESDA method, the spatial Durbin model and the mediating effect model. The main findings are as follows. (1) The average urban GTD performance in China from 2009 to 2019 showed a steady upward trend, but was still at a low level. Overall, the spatial distribution pattern of GTD performance showed the characteristics of “south > north” and “east > west”, mainly showing the evolution characteristics of the Yangtze River Delta city cluster, the Pearl River Delta city cluster, and the Beijing-Tianjin-Hebei city cluster as the core high-value areas gradually decreasing outward. (2) The impact of population aging on urban GTD had nonlinear and spillover characteristics, that is, population aging also impacted urban GTD in surrounding areas. Specifically, the increase of population aging in a city had a significant “U” shape effect on the GTD of that city, but the effect on the GTD of neighboring cities had an inverted “U” shape effect. (3) In terms of impact mechanism, population aging positively affected urban GTD by increasing human resources and technological innovation, while the transmission path of reducing labor supply had not yet come into play. Finally, according to the research findings, targeted recommendations are put forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bqss完成签到,获得积分10
刚刚
dddd完成签到,获得积分10
1秒前
3秒前
8秒前
8秒前
8秒前
南桥发布了新的文献求助10
9秒前
wanci应助山鬼不识采纳,获得10
10秒前
爆米花应助香芋采纳,获得10
11秒前
freshabc完成签到,获得积分10
11秒前
12秒前
11235应助KKKZ采纳,获得10
12秒前
神明发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
菓小柒完成签到 ,获得积分10
15秒前
大大杰完成签到,获得积分10
16秒前
浮游应助村上种树采纳,获得10
16秒前
善学以致用应助南桥采纳,获得10
16秒前
大头完成签到 ,获得积分10
17秒前
18秒前
Lucas应助nxdjmzm采纳,获得10
18秒前
Epiphany发布了新的文献求助10
19秒前
20秒前
胡椰奶发布了新的文献求助10
20秒前
陈1完成签到 ,获得积分10
23秒前
qqesk完成签到,获得积分10
25秒前
酷波er应助CZ88采纳,获得10
26秒前
科研通AI5应助yd采纳,获得10
26秒前
qqesk发布了新的文献求助10
26秒前
27秒前
量子星尘发布了新的文献求助20
27秒前
fanglin123应助harri采纳,获得10
27秒前
上官若男应助Mary采纳,获得10
29秒前
30秒前
巅峰囚冰完成签到,获得积分10
30秒前
乌龟君完成签到,获得积分10
30秒前
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896544
求助须知:如何正确求助?哪些是违规求助? 4178205
关于积分的说明 12970183
捐赠科研通 3941477
什么是DOI,文献DOI怎么找? 2162263
邀请新用户注册赠送积分活动 1180763
关于科研通互助平台的介绍 1086296