How does population aging affect urban green transition development in China? An empirical analysis based on spatial econometric model

中国 北京 人口 经济地理学 星团(航天器) 地理 人口学 计算机科学 社会学 考古 程序设计语言
作者
Yujie Wang,Hong Chen,Ruyin Long,Lei Wang,Menghua Yang,Qingqing Sun
出处
期刊:Environmental Impact Assessment Review [Elsevier]
卷期号:99: 107027-107027 被引量:5
标识
DOI:10.1016/j.eiar.2022.107027
摘要

Population aging plays a crucial role in urban green transformation development, and it is of great theoretical and practical significance to clarify the relationship between the two. Based on systematically sorting out the connotation of green transformational development (GTD), this study constructed a framework system for urban GTD, measured the GTD performance of 284 prefecture-level and above cities in China using the EW-TOPSIS model, and further explored the impact effects and mechanisms of population aging on urban GTD in China using the ESDA method, the spatial Durbin model and the mediating effect model. The main findings are as follows. (1) The average urban GTD performance in China from 2009 to 2019 showed a steady upward trend, but was still at a low level. Overall, the spatial distribution pattern of GTD performance showed the characteristics of “south > north” and “east > west”, mainly showing the evolution characteristics of the Yangtze River Delta city cluster, the Pearl River Delta city cluster, and the Beijing-Tianjin-Hebei city cluster as the core high-value areas gradually decreasing outward. (2) The impact of population aging on urban GTD had nonlinear and spillover characteristics, that is, population aging also impacted urban GTD in surrounding areas. Specifically, the increase of population aging in a city had a significant “U” shape effect on the GTD of that city, but the effect on the GTD of neighboring cities had an inverted “U” shape effect. (3) In terms of impact mechanism, population aging positively affected urban GTD by increasing human resources and technological innovation, while the transmission path of reducing labor supply had not yet come into play. Finally, according to the research findings, targeted recommendations are put forward.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jojo144发布了新的文献求助10
刚刚
1秒前
aich完成签到,获得积分10
1秒前
2秒前
热情的如雪完成签到,获得积分10
3秒前
yangjing发布了新的文献求助10
3秒前
ss完成签到 ,获得积分10
4秒前
丘比特应助流星噬月采纳,获得30
6秒前
苗儿发布了新的文献求助10
6秒前
7秒前
千凡发布了新的文献求助10
8秒前
9秒前
10秒前
体贴觅云完成签到,获得积分10
10秒前
无花果应助tim采纳,获得10
10秒前
无言完成签到 ,获得积分10
12秒前
12秒前
13秒前
科研通AI6应助yangjing采纳,获得10
14秒前
14秒前
Xianhe完成签到,获得积分10
16秒前
时迎天发布了新的文献求助10
17秒前
马大帅发布了新的文献求助10
17秒前
青柠发布了新的文献求助10
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
bkagyin应助luojimao采纳,获得10
23秒前
13052782801完成签到,获得积分20
23秒前
汪勇发布了新的文献求助10
23秒前
24秒前
希望天下0贩的0应助青柠采纳,获得10
24秒前
菠萝吃多发布了新的文献求助10
24秒前
科研通AI6应助小云采纳,获得10
24秒前
科研通AI2S应助jojo144采纳,获得10
26秒前
27秒前
zhangheng完成签到,获得积分20
27秒前
2023050945发布了新的文献求助10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618411
求助须知:如何正确求助?哪些是违规求助? 4703270
关于积分的说明 14921904
捐赠科研通 4757391
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299