Cell image instance segmentation based on PolarMask using weak labels

分割 人工智能 计算机科学 计算机视觉 尺度空间分割 图像分割 模式识别(心理学) 平滑的 血细胞 医学 免疫学
作者
Binbin Tong,Tingxi Wen,Yu Du,Tongyan Pan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107426-107426 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107426
摘要

A PolarMask-based method for blood cell contour segmentation is proposed. The method is divided into two parts. One part is a weak label-based model pretraining method, which uses weak labels to train the model and obtain a pretraining weight. The training speed and accuracy of the segmentation model are accelerated. The other part is based on the PolarMask method to segment the white and red blood cells in blood cells and can obtain smoother cell contours. Thus, it improves the accuracy of blood cell segmentation. Our method can help medical personnel identify the number of cells and cell shape quickly, which reduces the workload for medical personnel. We improve PolarMask to make it more suitable for blood cell contour segmentation, and the improved method can be divided into two parts. In the first part, we use a weakly labeled dataset with the labeling type of bounding boxes for pretraining and then use the labels of the segmentation type for transfer learning of the cell segmentation model. In the second part, we add a smoothing constraint loss to the loss function of the mask to smoothen the segmented cell contours. We add the SE attention mechanism in the backbone network (ResNet18) to further improve the segmentation accuracy. Our method is mainly used for the segmentation of blood cell (erythrocyte and leukocyte) contours. Our method improves average precision (AP) by 8.4% and AP50 by 0.6% compared with PolarMask. The most significant improvement is in AP75, which improves by 8.8%. Our method models blood cell contours based on PolarMask and uses a weakly labeled training model to obtain pretrained weights that can segment red and white blood cells. Our method effectively improves the accuracy of the model in segmenting blood cells, and the segmented blood cell contours are smoother.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流云完成签到,获得积分10
刚刚
汉堡包应助ff采纳,获得10
1秒前
smottom应助机械师简采纳,获得20
1秒前
小糖发布了新的文献求助10
1秒前
1秒前
SciGPT应助含蓄绿兰采纳,获得10
2秒前
徐徐徐徐发布了新的文献求助10
2秒前
机器发布了新的文献求助10
2秒前
Ava应助guguhuhu采纳,获得10
2秒前
Eon发布了新的文献求助10
3秒前
OrangeLight发布了新的文献求助10
3秒前
wewewew发布了新的文献求助10
5秒前
kunkun发布了新的文献求助10
6秒前
朱迪完成签到 ,获得积分10
7秒前
Emma完成签到 ,获得积分10
7秒前
碧蓝巧荷完成签到 ,获得积分10
7秒前
弗洛洛完成签到 ,获得积分10
8秒前
8秒前
魏冉发布了新的文献求助10
8秒前
9秒前
徐徐徐徐完成签到,获得积分10
10秒前
共享精神应助plant采纳,获得10
10秒前
10秒前
顺利毕业发布了新的文献求助10
11秒前
11秒前
谓之新午完成签到,获得积分10
11秒前
李静发布了新的文献求助10
12秒前
在水一方应助wewewew采纳,获得10
12秒前
lideng完成签到 ,获得积分10
12秒前
12秒前
1351567822应助beiest采纳,获得10
12秒前
13秒前
滚雪球的Dr Gao完成签到 ,获得积分10
13秒前
天天快乐应助文安采纳,获得10
14秒前
君无邪发布了新的文献求助10
14秒前
机器完成签到,获得积分20
14秒前
emm发布了新的文献求助10
14秒前
15秒前
陈茜完成签到,获得积分10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188