控制理论(社会学)
感应电动机
逆变器
模型预测控制
计算机科学
调制(音乐)
序列(生物学)
控制器(灌溉)
计算复杂性理论
电压
空间矢量调制
控制(管理)
工程类
算法
人工智能
化学
农学
哲学
生物化学
电气工程
生物
美学
作者
Tao Jin,Huiqing Song,Paul Gistain Ipoum‐Ngome,Daniel Legrand Mon‐Nzongo,Tang Jin-quan,Minlong Zhu,José Rodríguez
出处
期刊:IEEE Transactions on Industrial Electronics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:71 (1): 305-315
被引量:4
标识
DOI:10.1109/tie.2023.3241412
摘要
In this article, a low-computational burden model predictive flux control (MPFC) based on discrete space vector modulation (DSVM) and the optimal switching sequence (OSS) is proposed for achieving switching frequency (SF) and computational burden efficiencies in motor drives fed by two-level voltage source inverter. The DSVM is used to extend the prediction candidates of MPFC and greatly improve the performance of the controller. A generalized minimum flux error method independent of the number of virtual vectors is derived to cancel the exhaustive optimization method and lower the execution time of the proposed algorithm. In addition, new overmodulation and OSS schemes are designed to optimize the use of dc-link voltage and mitigate the inverter SF when implementing the optimal control action into switching states. The comparative experimental results show that without significant performance degradation, the proposed strategy provided about 50% SF and 25% execution time reductions compared to the classic MPFC methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI