亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Captain完成签到,获得积分10
1秒前
123123完成签到 ,获得积分10
2秒前
Orange应助噼里啪啦冲冲子采纳,获得10
2秒前
3秒前
123完成签到 ,获得积分10
9秒前
殷琛发布了新的文献求助10
9秒前
Tim888完成签到,获得积分10
11秒前
Dreamchaser完成签到,获得积分10
16秒前
17秒前
无辜的黄豆完成签到 ,获得积分10
19秒前
吾系渣渣辉完成签到 ,获得积分10
22秒前
22秒前
123发布了新的文献求助10
23秒前
微醺潮汐完成签到,获得积分10
25秒前
mmyhn应助科研通管家采纳,获得20
28秒前
andrele应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
所所应助FanKun采纳,获得10
28秒前
Li发布了新的文献求助10
31秒前
123完成签到,获得积分10
32秒前
35秒前
上官若男应助殷琛采纳,获得10
38秒前
奥利奥完成签到 ,获得积分10
39秒前
srx完成签到 ,获得积分10
40秒前
禅依完成签到,获得积分10
41秒前
FanKun发布了新的文献求助10
41秒前
虾球发布了新的文献求助10
43秒前
45秒前
赘婿应助禅依采纳,获得10
45秒前
我不到啊完成签到 ,获得积分10
46秒前
彭于晏应助VERITAS采纳,获得10
48秒前
tomato发布了新的文献求助10
52秒前
53秒前
inRe发布了新的文献求助10
54秒前
56秒前
殷琛发布了新的文献求助10
58秒前
zz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627829
求助须知:如何正确求助?哪些是违规求助? 4714854
关于积分的说明 14963247
捐赠科研通 4785572
什么是DOI,文献DOI怎么找? 2555178
邀请新用户注册赠送积分活动 1516526
关于科研通互助平台的介绍 1476936