SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier BV]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的依琴完成签到 ,获得积分10
刚刚
标致的问晴完成签到,获得积分0
1秒前
Dasha完成签到,获得积分10
1秒前
田様应助碧蓝鸡翅采纳,获得50
1秒前
养蚊子发布了新的文献求助10
2秒前
zyjsunye发布了新的文献求助10
2秒前
yu完成签到,获得积分10
3秒前
搞怪的白竹完成签到,获得积分10
3秒前
浮游应助守望者采纳,获得10
4秒前
研友_J8DXp8应助浅色凉生采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
7秒前
okay完成签到,获得积分10
7秒前
minagao发布了新的文献求助10
7秒前
洋洋洋发布了新的文献求助10
10秒前
生命奋斗发布了新的文献求助10
11秒前
王忠莲完成签到,获得积分10
11秒前
养蚊子完成签到,获得积分10
11秒前
科研小小白完成签到,获得积分10
11秒前
天明发布了新的文献求助10
11秒前
川川发布了新的文献求助10
11秒前
13秒前
sfsdfs完成签到,获得积分10
14秒前
炙热的人生完成签到,获得积分10
14秒前
乐安完成签到,获得积分20
16秒前
17秒前
18秒前
ograss发布了新的文献求助10
19秒前
陈某发布了新的文献求助10
19秒前
20秒前
虚心的如冰完成签到 ,获得积分10
21秒前
李爱国应助zy采纳,获得10
21秒前
22秒前
哭泣茗完成签到,获得积分10
22秒前
ZCL完成签到,获得积分10
22秒前
vt发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002750
求助须知:如何正确求助?哪些是违规求助? 4247654
关于积分的说明 13233788
捐赠科研通 4046574
什么是DOI,文献DOI怎么找? 2213740
邀请新用户注册赠送积分活动 1223789
关于科研通互助平台的介绍 1144127