SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YXL完成签到,获得积分10
1秒前
zzh发布了新的文献求助10
1秒前
蛋黄啵啵完成签到 ,获得积分10
2秒前
囡囡完成签到,获得积分10
2秒前
俞秋烟完成签到,获得积分10
3秒前
桐桐应助小亮哈哈采纳,获得10
4秒前
周舟完成签到,获得积分10
4秒前
Gloria2022发布了新的文献求助10
4秒前
li完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
孤独听雨的猫完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
VV发布了新的文献求助30
6秒前
6秒前
心亭完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI6.1应助yy采纳,获得10
7秒前
7秒前
852应助小美采纳,获得10
8秒前
8秒前
8秒前
何玉斌发布了新的文献求助10
9秒前
仙宫顶针发布了新的文献求助10
9秒前
慕青应助满锅采纳,获得10
10秒前
麦木发布了新的文献求助10
10秒前
tian1115发布了新的文献求助10
10秒前
11秒前
科研助理发布了新的文献求助10
11秒前
13秒前
陶醉的梦岚完成签到,获得积分10
13秒前
彭于晏应助冰雪物语采纳,获得10
14秒前
所所应助清风竹舞采纳,获得10
14秒前
14秒前
280完成签到,获得积分10
14秒前
武科完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609