亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier BV]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的尔芙完成签到,获得积分10
4秒前
17秒前
miki完成签到,获得积分10
41秒前
54秒前
1分钟前
化爷发布了新的文献求助10
1分钟前
科研通AI5应助化爷采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
111111完成签到 ,获得积分10
2分钟前
lztong完成签到,获得积分10
2分钟前
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
3分钟前
蛋白积聚完成签到,获得积分10
3分钟前
满意访冬完成签到,获得积分20
3分钟前
安静的飞珍完成签到,获得积分10
3分钟前
小丸子和zz完成签到 ,获得积分10
4分钟前
帅气的安柏完成签到,获得积分10
4分钟前
Jessiehuang完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
hqh发布了新的文献求助10
5分钟前
英姑应助hqh采纳,获得10
6分钟前
6分钟前
6分钟前
NS完成签到,获得积分10
6分钟前
锂电阳离子无序完成签到,获得积分10
6分钟前
6分钟前
嘬痰猩猩完成签到 ,获得积分10
6分钟前
小脸红扑扑完成签到 ,获得积分10
7分钟前
小二郎应助Omni采纳,获得10
8分钟前
8分钟前
世界完成签到,获得积分10
8分钟前
背后晓兰完成签到 ,获得积分10
9分钟前
xingsixs完成签到 ,获得积分10
9分钟前
Cassie发布了新的文献求助10
10分钟前
neversay4ever完成签到 ,获得积分10
10分钟前
科研通AI5应助秋日思语采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173907
求助须知:如何正确求助?哪些是违规求助? 4363577
关于积分的说明 13585660
捐赠科研通 4212170
什么是DOI,文献DOI怎么找? 2310257
邀请新用户注册赠送积分活动 1309341
关于科研通互助平台的介绍 1256759