SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
神秘猎牛人应助李博士采纳,获得10
6秒前
6秒前
史shi发布了新的文献求助10
6秒前
可不发布了新的文献求助10
7秒前
7秒前
bkagyin应助帅发采纳,获得10
7秒前
HJJHJH发布了新的文献求助10
7秒前
csj发布了新的文献求助10
7秒前
7秒前
整齐谷芹完成签到,获得积分10
8秒前
麻瓜发布了新的文献求助10
9秒前
9秒前
陈文文发布了新的文献求助10
10秒前
shouyi886完成签到,获得积分10
10秒前
11秒前
11秒前
zhx发布了新的文献求助10
11秒前
Mandy发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Jasper应助ee采纳,获得10
13秒前
14秒前
史shi完成签到,获得积分10
14秒前
燕麦大王发布了新的文献求助10
15秒前
kiki发布了新的文献求助10
15秒前
食杂砸发布了新的文献求助10
16秒前
皮皮大王完成签到 ,获得积分10
17秒前
光亮鹤发布了新的文献求助10
17秒前
万能图书馆应助迫切采纳,获得10
18秒前
衣锦夜行完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913