SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier BV]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张乐发布了新的文献求助10
1秒前
sjll完成签到,获得积分10
1秒前
1秒前
1秒前
科研橙子完成签到,获得积分10
2秒前
2秒前
麦丰完成签到,获得积分10
2秒前
hhq发布了新的文献求助10
2秒前
3秒前
pakyl发布了新的文献求助10
4秒前
4秒前
瑶啊瑶完成签到,获得积分10
5秒前
朴素阁发布了新的文献求助30
5秒前
田様应助淡定宝贝采纳,获得10
5秒前
5秒前
6秒前
虚心千凡发布了新的文献求助10
6秒前
伊雪儿发布了新的文献求助10
6秒前
7秒前
小C发布了新的文献求助10
7秒前
愉快若剑发布了新的文献求助30
8秒前
Moonkiss完成签到,获得积分10
8秒前
8秒前
8秒前
hhq完成签到,获得积分20
9秒前
全球完成签到,获得积分10
10秒前
11秒前
超然度陈完成签到,获得积分10
11秒前
酷波er应助pakyl采纳,获得30
11秒前
kudoukoumei发布了新的文献求助10
11秒前
12秒前
13秒前
yjn发布了新的文献求助10
13秒前
14秒前
JamesPei应助He采纳,获得10
14秒前
14秒前
薛小飞发布了新的文献求助10
14秒前
超级大定春完成签到,获得积分20
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328084
求助须知:如何正确求助?哪些是违规求助? 4467884
关于积分的说明 13903116
捐赠科研通 4360702
什么是DOI,文献DOI怎么找? 2395241
邀请新用户注册赠送积分活动 1388807
关于科研通互助平台的介绍 1359617