SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier BV]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白小橘完成签到 ,获得积分10
1秒前
1秒前
烂漫的访天完成签到,获得积分10
1秒前
lys发布了新的文献求助10
1秒前
LZK发布了新的文献求助10
1秒前
希望天下0贩的0应助carcar采纳,获得10
2秒前
BurgerKing发布了新的文献求助10
2秒前
韭菜盒子发布了新的文献求助10
2秒前
酷波er应助听闻采纳,获得10
2秒前
赫连人杰发布了新的文献求助200
2秒前
不想干活应助可乐不加冰采纳,获得10
2秒前
林沐发布了新的文献求助10
2秒前
舒心白山完成签到 ,获得积分10
3秒前
殷晓阳发布了新的文献求助10
3秒前
小余完成签到,获得积分20
3秒前
跳跃仙人掌发布了新的文献求助100
3秒前
Starset应助欣喜紫真采纳,获得20
3秒前
evergarden完成签到,获得积分10
4秒前
所所应助帅气的冬菱采纳,获得10
5秒前
小二郎应助火星上的中恶采纳,获得80
5秒前
研友_VZG7GZ应助yehuaiyu采纳,获得10
5秒前
5秒前
5秒前
宠仙发布了新的文献求助10
6秒前
yyyfff应助ke2w1n12138采纳,获得10
6秒前
ljh1771发布了新的文献求助30
6秒前
Enckson完成签到,获得积分10
6秒前
6秒前
CodeCraft应助123采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Harden发布了新的文献求助20
7秒前
7秒前
两米发布了新的文献求助10
7秒前
华仔应助若雨沫采纳,获得30
7秒前
华仔应助lys采纳,获得10
9秒前
热情灵珊完成签到,获得积分10
9秒前
9秒前
深情安青应助嘉梦采纳,获得30
10秒前
大个应助木尧采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599540
求助须知:如何正确求助?哪些是违规求助? 4010119
关于积分的说明 12414946
捐赠科研通 3689740
什么是DOI,文献DOI怎么找? 2034025
邀请新用户注册赠送积分活动 1067273
科研通“疑难数据库(出版商)”最低求助积分说明 952284