SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier]
卷期号:30 (5): 397-405 被引量:3
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樂酉完成签到 ,获得积分10
刚刚
HH完成签到,获得积分10
1秒前
dichloro发布了新的文献求助10
2秒前
852发布了新的文献求助10
2秒前
renwoxing完成签到,获得积分10
3秒前
伍绮彤完成签到,获得积分10
3秒前
aaa完成签到,获得积分10
4秒前
xinyi发布了新的文献求助10
4秒前
5秒前
7秒前
7秒前
英俊的铭应助Cher1she采纳,获得20
7秒前
Y.完成签到,获得积分10
7秒前
朱立麒完成签到,获得积分10
7秒前
方方完成签到,获得积分10
9秒前
迦太基发布了新的文献求助10
10秒前
一一完成签到,获得积分10
11秒前
朱立麒发布了新的文献求助10
12秒前
十斤芒果发布了新的文献求助10
12秒前
vippp完成签到 ,获得积分10
12秒前
骐骥过隙发布了新的文献求助10
15秒前
欢呼凡旋完成签到,获得积分10
15秒前
希望天下0贩的0应助理li采纳,获得10
15秒前
迦太基完成签到,获得积分10
16秒前
Tokgo完成签到,获得积分10
16秒前
欢呼凡旋发布了新的文献求助20
18秒前
大个应助现代丹萱采纳,获得10
18秒前
19秒前
星星完成签到,获得积分10
20秒前
爱听歌的依秋完成签到,获得积分10
22秒前
22秒前
香蕉觅云应助呼噜噜采纳,获得10
23秒前
科研通AI2S应助严明采纳,获得10
24秒前
李杰完成签到,获得积分20
26秒前
江三村完成签到 ,获得积分10
27秒前
28秒前
yoyo完成签到,获得积分10
28秒前
李杰发布了新的文献求助10
28秒前
小蘑菇应助不安的凡采纳,获得10
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799361
捐赠科研通 2447868
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194