SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance

轮廓 分割 计算机科学 人工智能 子宫 腹腔镜检查 医学 计算机视觉 模式识别(心理学) 放射科 计算机图形学(图像) 内科学
作者
Sabrina Madad Zadeh,Tom François,Aurélie Comptour,Michel Canis,Nicolas Bourdel,Adrien Bartoli
出处
期刊:Journal of Minimally Invasive Gynecology [Elsevier]
卷期号:30 (5): 397-405 被引量:9
标识
DOI:10.1016/j.jmig.2023.01.012
摘要

We focus on explaining the concepts underlying artificial intelligence (AI), using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality (AR), to provide concrete examples. AI can be used to automatically interpret the surgical images. We are specifically interested in the tasks of uterus segmentation and uterus contouring in laparoscopic images. A major difficulty with AI methods is their requirement for a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset with annotated anatomy. We study the impact of AI on automating key steps of Uteraug.We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus contours and the regions of the left and right fallopian tube junctions. We divided our dataset into a training and a test dataset. Our engineers trained a neural network from the training dataset. We then investigated the performance of the neural network compared to the experts on the test dataset. In particular, we established the relationship between the size of the training dataset and the performance, by creating size-performance graphs.University.Not available.Not available.The size-performance graphs show a performance plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current manual setup.We describe a concrete AI system in laparoscopic surgery with all steps from data collection, data annotation, neural network training, performance evaluation, to final application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyo发布了新的文献求助10
1秒前
星辰大海应助陈勇杰采纳,获得10
1秒前
Carolin完成签到,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
3秒前
一一发布了新的文献求助10
3秒前
孙笑川258完成签到,获得积分10
3秒前
李蔚然完成签到,获得积分10
4秒前
njc大魔王给njc大魔王的求助进行了留言
4秒前
Jasper应助一一采纳,获得10
5秒前
西瓜汁发布了新的文献求助10
6秒前
6秒前
meng给meng的求助进行了留言
7秒前
7秒前
李蔚然发布了新的文献求助10
8秒前
jjx1005完成签到 ,获得积分10
8秒前
wy.he应助游劳布采纳,获得10
8秒前
方式产生的完成签到,获得积分20
8秒前
9秒前
9秒前
doudou完成签到,获得积分10
9秒前
共享精神应助科研小白采纳,获得10
9秒前
艾卡西亚毛毛雨完成签到 ,获得积分10
10秒前
10秒前
10秒前
爆米花应助呵呵呵呵采纳,获得10
11秒前
晓静完成签到 ,获得积分10
11秒前
步步发布了新的文献求助20
12秒前
晞嘻发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
EricXu发布了新的文献求助10
13秒前
冰冰发布了新的文献求助10
14秒前
14秒前
14秒前
友好的南霜完成签到,获得积分10
15秒前
任任发布了新的文献求助30
15秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726