Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission

材料科学 声发射 环氧树脂 复合材料 支持向量机 分层(地质) 复合数 波形 计算机科学 模式识别(心理学) 人工智能 雷达 古生物学 生物 构造学 电信 俯冲
作者
Shuai Qiao,Man Huang,Yujiao Liang,Shuan‐zhu Zhang,Wei Zhou
出处
期刊:Polymer Composites [Wiley]
卷期号:44 (4): 2427-2440 被引量:16
标识
DOI:10.1002/pc.27254
摘要

Abstract Combining acoustic emission (AE) and machine learning algorithms to understand damage and failure of carbon fiber reinforced polymer (CFRP) under bending loads is a challenging task in their practical applications. This work aims to identify different characteristics of the signal induced by damage patterns of carbon/epoxy composites using machine learning model. By carrying out wavelet packet analysis of the AE signals allowing the identification of four macroscopic damage modes. Four types of signals corresponding to matrix cracking, delamination, fiber/matrix debonding and fiber breakage are characterized by the frequency bands of the main energy distribution in the original waveform. The frequency bands are (62.5–125 kHz) or (125–187.5 kHz), (187.5–250 kHz), (250–312.5 kHz) and (312.5–375 kHz) and above, respectively. To test the actual performance of the established model, called support vector machine (SVM) classifier, several precracked and untreated specimens have been fabricated and subjected to three‐point bending test. The classification result of constructed classifier was compared with the k ‐means algorithm, which is widely accepted for classifying AE signals, and the similarity of the two results is analyzed. The results indicated that the similarity of different clusters exceeded 92%, 84%, 83% and 77%, respectively. It can be seen that the SVM classifier was considered promising to provide new ideas for the health monitoring of composite structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
lu应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_MLJldZ发布了新的文献求助10
1秒前
wys完成签到 ,获得积分10
2秒前
3秒前
michaelvin完成签到,获得积分10
3秒前
学术大白完成签到 ,获得积分10
6秒前
6秒前
SYT完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
魏伯安发布了新的文献求助10
11秒前
11秒前
zhouleiwang完成签到,获得积分10
12秒前
李爱国应助aiming采纳,获得10
13秒前
无奈傲菡完成签到,获得积分10
14秒前
TT发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
sun发布了新的文献求助10
16秒前
荣荣完成签到,获得积分10
16秒前
17秒前
小安完成签到,获得积分10
18秒前
Spencer完成签到 ,获得积分10
18秒前
PengHu完成签到,获得积分10
19秒前
19秒前
21秒前
23秒前
23秒前
23秒前
ywang发布了新的文献求助10
24秒前
失眠虔纹完成签到,获得积分10
24秒前
斯文败类应助nextconnie采纳,获得10
24秒前
药学牛马发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849