Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission

材料科学 声发射 环氧树脂 复合材料 支持向量机 分层(地质) 复合数 波形 计算机科学 模式识别(心理学) 人工智能 古生物学 电信 雷达 生物 俯冲 构造学
作者
Shuai Qiao,Man Huang,Yujiao Liang,Shuan‐zhu Zhang,Wei Zhou
出处
期刊:Polymer Composites [Wiley]
卷期号:44 (4): 2427-2440 被引量:17
标识
DOI:10.1002/pc.27254
摘要

Abstract Combining acoustic emission (AE) and machine learning algorithms to understand damage and failure of carbon fiber reinforced polymer (CFRP) under bending loads is a challenging task in their practical applications. This work aims to identify different characteristics of the signal induced by damage patterns of carbon/epoxy composites using machine learning model. By carrying out wavelet packet analysis of the AE signals allowing the identification of four macroscopic damage modes. Four types of signals corresponding to matrix cracking, delamination, fiber/matrix debonding and fiber breakage are characterized by the frequency bands of the main energy distribution in the original waveform. The frequency bands are (62.5–125 kHz) or (125–187.5 kHz), (187.5–250 kHz), (250–312.5 kHz) and (312.5–375 kHz) and above, respectively. To test the actual performance of the established model, called support vector machine (SVM) classifier, several precracked and untreated specimens have been fabricated and subjected to three‐point bending test. The classification result of constructed classifier was compared with the k ‐means algorithm, which is widely accepted for classifying AE signals, and the similarity of the two results is analyzed. The results indicated that the similarity of different clusters exceeded 92%, 84%, 83% and 77%, respectively. It can be seen that the SVM classifier was considered promising to provide new ideas for the health monitoring of composite structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
stars发布了新的文献求助10
1秒前
1秒前
1秒前
qian完成签到,获得积分10
2秒前
2秒前
mealies发布了新的文献求助10
2秒前
斯文败类应助如此采纳,获得10
3秒前
3秒前
4秒前
呈沉发布了新的文献求助10
4秒前
6秒前
M旭旭发布了新的文献求助10
7秒前
科研通AI2S应助scsc采纳,获得10
7秒前
8秒前
清新的夏烟完成签到,获得积分10
8秒前
飞云完成签到,获得积分10
8秒前
椰青冰萃发布了新的文献求助30
9秒前
9秒前
Owen应助野性的博涛采纳,获得10
10秒前
马康辉发布了新的文献求助10
10秒前
10秒前
13秒前
111应助快乐小汉堡采纳,获得10
13秒前
执念完成签到 ,获得积分10
13秒前
慕青应助Guochunbao采纳,获得10
13秒前
M旭旭完成签到,获得积分10
13秒前
14秒前
14秒前
lbx发布了新的文献求助10
14秒前
15秒前
15秒前
七慕凉应助外向跳跳糖采纳,获得10
17秒前
17秒前
18秒前
开朗安筠完成签到,获得积分20
18秒前
zfg发布了新的文献求助10
19秒前
英俊的铭应助研友_n2Q9KL采纳,获得10
20秒前
喻踏歌发布了新的文献求助10
20秒前
呵呵完成签到 ,获得积分10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226