Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission

材料科学 声发射 环氧树脂 复合材料 支持向量机 分层(地质) 复合数 波形 计算机科学 模式识别(心理学) 人工智能 雷达 古生物学 生物 构造学 电信 俯冲
作者
Shuai Qiao,Man Huang,Yujiao Liang,Shuan‐zhu Zhang,Wei Zhou
出处
期刊:Polymer Composites [Wiley]
卷期号:44 (4): 2427-2440 被引量:30
标识
DOI:10.1002/pc.27254
摘要

Abstract Combining acoustic emission (AE) and machine learning algorithms to understand damage and failure of carbon fiber reinforced polymer (CFRP) under bending loads is a challenging task in their practical applications. This work aims to identify different characteristics of the signal induced by damage patterns of carbon/epoxy composites using machine learning model. By carrying out wavelet packet analysis of the AE signals allowing the identification of four macroscopic damage modes. Four types of signals corresponding to matrix cracking, delamination, fiber/matrix debonding and fiber breakage are characterized by the frequency bands of the main energy distribution in the original waveform. The frequency bands are (62.5–125 kHz) or (125–187.5 kHz), (187.5–250 kHz), (250–312.5 kHz) and (312.5–375 kHz) and above, respectively. To test the actual performance of the established model, called support vector machine (SVM) classifier, several precracked and untreated specimens have been fabricated and subjected to three‐point bending test. The classification result of constructed classifier was compared with the k ‐means algorithm, which is widely accepted for classifying AE signals, and the similarity of the two results is analyzed. The results indicated that the similarity of different clusters exceeded 92%, 84%, 83% and 77%, respectively. It can be seen that the SVM classifier was considered promising to provide new ideas for the health monitoring of composite structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Owen应助难过的谷芹采纳,获得10
3秒前
3秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
池洲应助科研通管家采纳,获得10
4秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
危机的阁应助科研通管家采纳,获得30
5秒前
子昂应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
池洲应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
危机的阁应助科研通管家采纳,获得30
6秒前
6秒前
子昂应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
pluto应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
HOAN应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
左丘以云完成签到,获得积分10
6秒前
危机的阁应助科研通管家采纳,获得30
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
今后应助Hearing胡采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044