Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission

材料科学 声发射 环氧树脂 复合材料 支持向量机 分层(地质) 复合数 波形 计算机科学 模式识别(心理学) 人工智能 雷达 古生物学 生物 构造学 电信 俯冲
作者
Shuai Qiao,Man Huang,Yujiao Liang,Shuan‐zhu Zhang,Wei Zhou
出处
期刊:Polymer Composites [Wiley]
卷期号:44 (4): 2427-2440 被引量:22
标识
DOI:10.1002/pc.27254
摘要

Abstract Combining acoustic emission (AE) and machine learning algorithms to understand damage and failure of carbon fiber reinforced polymer (CFRP) under bending loads is a challenging task in their practical applications. This work aims to identify different characteristics of the signal induced by damage patterns of carbon/epoxy composites using machine learning model. By carrying out wavelet packet analysis of the AE signals allowing the identification of four macroscopic damage modes. Four types of signals corresponding to matrix cracking, delamination, fiber/matrix debonding and fiber breakage are characterized by the frequency bands of the main energy distribution in the original waveform. The frequency bands are (62.5–125 kHz) or (125–187.5 kHz), (187.5–250 kHz), (250–312.5 kHz) and (312.5–375 kHz) and above, respectively. To test the actual performance of the established model, called support vector machine (SVM) classifier, several precracked and untreated specimens have been fabricated and subjected to three‐point bending test. The classification result of constructed classifier was compared with the k ‐means algorithm, which is widely accepted for classifying AE signals, and the similarity of the two results is analyzed. The results indicated that the similarity of different clusters exceeded 92%, 84%, 83% and 77%, respectively. It can be seen that the SVM classifier was considered promising to provide new ideas for the health monitoring of composite structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nothing发布了新的文献求助10
1秒前
cute666发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
纸质超人发布了新的文献求助10
2秒前
3秒前
3秒前
Lucas应助ln采纳,获得10
4秒前
ZSY完成签到,获得积分10
4秒前
huihui发布了新的文献求助10
4秒前
lin完成签到,获得积分10
4秒前
Hello应助小卢睡的香采纳,获得10
6秒前
情怀应助金荣采纳,获得20
7秒前
万信心发布了新的文献求助10
7秒前
7秒前
星辰大海应助zifeimo采纳,获得10
7秒前
Jasper应助杨一采纳,获得10
9秒前
cl完成签到 ,获得积分10
9秒前
阳光襄发布了新的文献求助10
9秒前
cute666完成签到,获得积分10
9秒前
10秒前
lin发布了新的文献求助10
10秒前
星星虫完成签到,获得积分10
10秒前
思源应助李家龙采纳,获得10
10秒前
11秒前
12秒前
12秒前
12秒前
FKVB_完成签到,获得积分10
12秒前
12秒前
绿灯请通行完成签到,获得积分10
13秒前
WT发布了新的文献求助10
13秒前
黑摄会阿Fay完成签到,获得积分10
13秒前
13秒前
沉默羔羊完成签到,获得积分10
13秒前
桐桐应助卜钊采纳,获得10
14秒前
小卢睡的香完成签到,获得积分10
14秒前
斯文败类应助hongdongxiang采纳,获得10
15秒前
FashionBoy应助静心404采纳,获得10
15秒前
万邦德完成签到,获得积分10
16秒前
16秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646