清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Neural architecture search algorithm to optimize deep Transformer model for fault detection in electrical power distribution systems

计算机科学 变压器 人工神经网络 故障检测与隔离 算法 人工智能 电压 工程类 电气工程 执行机构
作者
Jibin B. Thomas,Shihabudheen K.V.
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105890-105890 被引量:26
标识
DOI:10.1016/j.engappai.2023.105890
摘要

This paper proposes a neural architecture search algorithm for obtaining an optimum Transformer model to detect and localize different power system faults and uncertain conditions, such as symmetrical shunt faults, unsymmetrical shunt faults, high-impedance faults, switching conditions (capacitor switching, load switching, transformer switching, DG switching and feeder switching), insulator leakage and transformer inrush current in a distribution system. The Transformer model was proposed to tackle the high memory consumption of the deep CNN attention models and the long-term dependency problem of the RNN attention models. There exist different types of attention mechanisms and feedforward networks for designing a Transformer architecture. Hand engineering of these layers can be inefficient and time-consuming. Therefore, this paper makes use of the Differential Architecture Search (DARTS) algorithm to automatically generate optimal Transformer architectures with less search time cost. The algorithm achieves this by making the search process differentiable to architecture hyperparameters thus making the network search process an end-to-end problem. The proposed model attempts to automatically detect faults in a bus using current measurements from distant monitoring points. The proposed fault analysis was conducted on the standard IEEE 14 bus distribution system and the VSB power line fault detection database. The proposed model was found to produce better performance on the test database when evaluated using F1-Score (99.4% for fault type classification and 97.7% for fault location classification), Matthews Correlation Coefficient (MCC) (99.3% for fault type classification and 97.6% for fault location classification), accuracy and Area Under the Curve (AUC). The architecture transferability of the proposed method was also studied using real-world power line data for fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
naczx完成签到,获得积分0
24秒前
阜睿完成签到 ,获得积分10
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
我是老大应助欣欣采纳,获得10
2分钟前
孙老师完成签到 ,获得积分10
2分钟前
3分钟前
要开心发布了新的文献求助10
3分钟前
3分钟前
欣欣发布了新的文献求助10
3分钟前
MIMI完成签到 ,获得积分10
3分钟前
3分钟前
Barid完成签到,获得积分10
4分钟前
morena应助紫熊采纳,获得10
4分钟前
咯咯咯完成签到 ,获得积分10
4分钟前
领导范儿应助nicol.z采纳,获得10
5分钟前
TsuKe完成签到,获得积分10
5分钟前
5分钟前
nicol.z完成签到,获得积分10
5分钟前
nicol.z发布了新的文献求助10
5分钟前
紫熊完成签到,获得积分10
5分钟前
cyskdsn完成签到 ,获得积分10
5分钟前
aowulan完成签到 ,获得积分10
5分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
Oracle应助科研通管家采纳,获得10
6分钟前
斯文的难破完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
xlj730227完成签到 ,获得积分10
7分钟前
Oracle应助科研通管家采纳,获得10
8分钟前
章鱼完成签到,获得积分10
8分钟前
woxinyouyou完成签到,获得积分0
9分钟前
wujiwuhui完成签到 ,获得积分10
12分钟前
12分钟前
彦嘉发布了新的文献求助30
12分钟前
含糊的无声完成签到 ,获得积分10
13分钟前
开心每一天完成签到 ,获得积分10
13分钟前
科研通AI5应助Wfmmm采纳,获得10
13分钟前
13分钟前
14分钟前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709169
求助须知:如何正确求助?哪些是违规求助? 3257286
关于积分的说明 9904304
捐赠科研通 2970204
什么是DOI,文献DOI怎么找? 1629041
邀请新用户注册赠送积分活动 772427
科研通“疑难数据库(出版商)”最低求助积分说明 743799