A two-stage distributionally robust optimization model for optimizing water-hydrogen complementary operation under multiple uncertainties

稳健优化 数学优化 计算机科学 水力发电 随机规划 风力发电 制氢 工程类 数学 化学 电气工程 有机化学
作者
Feng Kong,Jinhui Mi,Yuwei Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:378: 134538-134538 被引量:2
标识
DOI:10.1016/j.jclepro.2022.134538
摘要

Under the pressures of fossil energy depletion and the “Carbon peak and neutrality” target, the development of clean energies such as hydropower and hydrogen has received widespread attention. The integration of hydropower, power-to-hydrogen/hydrogen-to-power and energy storage (forming a water-hydrogen complementary system) can improve the water resource utilization and obtain additional benefits by selling hydrogen etc. However, random fluctuations in market electricity prices, water flow and electric load seriously interfere with the complementarity of water and hydrogen, hindering the acquisition of the above benefits. To this end, this paper proposes a two-stage distributionally robust optimization model to solve the operation scheduling issue of the water-hydrogen complementary system under multiple uncertainties. Specifically, the uncertain distribution of market electricity prices, water flow and electric load forecasting errors are depicted with a moment-based ambiguity set. In the first stage, electricity and hydrogen are coordinately scheduled based on the forecast information to maximize the operation profit of the complementary system. In the second stage, the operations of flexibility resources are linearly adjusted from the first stage to resist the interference of the “worst-case” distribution in the ambiguity set. Finally, the model is equivalently reformulated into a mixed integer linear programming for solution feasibility. Simulation verifies that: 1) the model is conducive to the complementary system operation, such as 43.7% profit improvement (compared with scheduling ignoring uncertainties), 97.70% water utilization and effectively resisting uncertainties; 2) the model keeps low conservativeness and computational complexity compared with the stochastic and robust optimizations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
刚刚
春夏秋冬完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
holly完成签到 ,获得积分10
1秒前
ShiqiLiu完成签到,获得积分10
2秒前
2秒前
大力水手完成签到,获得积分0
2秒前
2秒前
希望天下0贩的0应助加油采纳,获得10
3秒前
二条完成签到,获得积分10
3秒前
完美世界应助芝士采纳,获得10
3秒前
爆米花应助芝士采纳,获得10
3秒前
bkagyin应助xxx采纳,获得10
3秒前
zhizhi应助愉快的枕头采纳,获得10
3秒前
金皮卡发布了新的文献求助20
4秒前
4秒前
核桃发布了新的文献求助20
4秒前
努力发文章应助lizhiyuan采纳,获得10
4秒前
虚幻的涵柏完成签到,获得积分10
5秒前
嘿小黑完成签到,获得积分10
5秒前
I_won_t发布了新的文献求助10
5秒前
173678发布了新的文献求助10
6秒前
zuo发布了新的文献求助10
6秒前
落后的秋荷完成签到,获得积分10
6秒前
孙刚完成签到 ,获得积分10
6秒前
lalahei完成签到,获得积分10
6秒前
清飞应助ceeray23采纳,获得20
8秒前
8秒前
8秒前
8秒前
8秒前
让我康康完成签到 ,获得积分10
8秒前
游戏那我可徐完成签到 ,获得积分10
9秒前
疯狂飞跃发布了新的文献求助10
9秒前
10秒前
zyr完成签到,获得积分20
10秒前
nemo711完成签到,获得积分10
10秒前
哐哧哐哧薯完成签到 ,获得积分10
10秒前
顾矜应助夏果采纳,获得10
10秒前
呼呼啦呼啦完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279