Long-term Prediction Method for PM2.5 Concentration Using Edge Channel Graph Attention Network and Gating Closed-form Continuous-time Neural Networks

期限(时间) 门控 频道(广播) 计算机科学 GSM演进的增强数据速率 人工神经网络 图形 人工智能 模式识别(心理学) 生物系统 理论计算机科学 计算机网络 心理学 物理 神经科学 量子力学 生物
作者
Chen Zhang,Xiaofan Li,Hongyang Sheng,Ya Peng Shen,Wei Xie,Xuhui Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier]
标识
DOI:10.1016/j.psep.2024.06.090
摘要

Fine particulate matter such as PM2.5 threatens significantly to the environment and human health, so it is essential to design a reliable long-term prediction method for PM2.5 concentrations. Existing long-term PM2.5 prediction models inadequately utilize urban spatial features, fail to consider the role of meteorological factors in PM2.5 levels, and overlook the interaction between PM2.5 concentrations in different cities. To tackle this issue, we propose two new models and integrate them. Firstly, we develop a spatial feature model (ECGAT) for extracting PM2.5 concentration among regions based on Graph Neural Networks (GNN), edge-channel mechanisms, and Graph Attention Convolution (GATConv). This model utilizes GNN to extract urban adjacency relationships and meteorological features, employs edge-channel mechanisms to recalculate weights for interactions between cities, and outputs spatial correlations through GATConv. Secondly, we propose Gating Closed-form Continuous-time Neural Networks (GCFC) as a temporal model to extract the PM2.5 concentration's temporal features. The fusion of these two models, named ECGAT-GCFC (EGCFC), enhances the model's capability to capture spatiotemporal features and improves performance in PM2.5 long-term predictions. Results from real-world data analysis show that the proposed algorithm outperforms state-of-the-art existing prediction models in predicting PM2.5 levels over long durations. Compared to baseline models, EGCFC reduces RMSE by an average of 3.39%, decreases MAE by 4.83%, increases R2 by 4.89%, CSI by 3.13%, and lowers FAR by 11.39%. These indicate that EGCFC is an effective method for predicting trends in urban PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
alooof完成签到,获得积分10
1秒前
白菜帮子发布了新的文献求助10
2秒前
景平完成签到,获得积分10
2秒前
4秒前
乱七八糟发布了新的文献求助30
4秒前
4秒前
tiger一tiaotiao完成签到,获得积分10
4秒前
serein完成签到,获得积分10
4秒前
yaaabo完成签到,获得积分10
5秒前
科研yu完成签到,获得积分10
5秒前
dyd发布了新的文献求助30
6秒前
隐形曼青应助喵喵采纳,获得10
6秒前
7秒前
8秒前
白菜帮子完成签到,获得积分10
8秒前
科研通AI2S应助xcc采纳,获得10
8秒前
nibaba完成签到,获得积分10
9秒前
善学以致用应助123采纳,获得10
9秒前
脑洞疼应助hahahayi采纳,获得10
9秒前
梁三柏应助huahua采纳,获得10
10秒前
冷静青文发布了新的文献求助10
10秒前
sunianjinshi完成签到,获得积分10
12秒前
吴大振应助晚晚采纳,获得10
12秒前
xdh发布了新的文献求助10
13秒前
打打应助ccc采纳,获得10
14秒前
14秒前
朴素的紫安完成签到 ,获得积分10
14秒前
不停完成签到,获得积分20
15秒前
dingxy1009完成签到,获得积分10
15秒前
科研通AI2S应助FancyShi采纳,获得10
15秒前
pluto应助禹丹烟采纳,获得10
19秒前
FancyShi完成签到,获得积分10
21秒前
安德鲁森完成签到 ,获得积分10
21秒前
甜甜的曼荷完成签到,获得积分10
22秒前
23秒前
hou完成签到 ,获得积分10
24秒前
24秒前
邓佳鑫Alan发布了新的文献求助10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023