亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long-term prediction method for PM2.5 concentration using edge channel graph attention network and gating closed-form continuous-time neural networks

期限(时间) 门控 频道(广播) 计算机科学 GSM演进的增强数据速率 人工神经网络 图形 人工智能 模式识别(心理学) 生物系统 理论计算机科学 计算机网络 心理学 物理 神经科学 生物 量子力学
作者
Chen Zhang,Xiaofan Li,Hongyang Sheng,Ya Peng Shen,Wei Xie,Xuhui Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:189: 356-373 被引量:8
标识
DOI:10.1016/j.psep.2024.06.090
摘要

Fine particulate matter such as PM2.5 threatens significantly to the environment and human health, so it is essential to design a reliable long-term prediction method for PM2.5 concentrations. Existing long-term PM2.5 prediction models inadequately utilize urban spatial features, fail to consider the role of meteorological factors in PM2.5 levels, and overlook the interaction between PM2.5 concentrations in different cities. To tackle this issue, we propose two new models and integrate them. Firstly, we develop a spatial feature model (ECGAT) for extracting PM2.5 concentration among regions based on Graph Neural Networks (GNN), edge-channel mechanisms, and Graph Attention Convolution (GATConv). This model utilizes GNN to extract urban adjacency relationships and meteorological features, employs edge-channel mechanisms to recalculate weights for interactions between cities, and outputs spatial correlations through GATConv. Secondly, we propose Gating Closed-form Continuous-time Neural Networks (GCFC) as a temporal model to extract the PM2.5 concentration's temporal features. The fusion of these two models, named ECGAT-GCFC (EGCFC), enhances the model's capability to capture spatiotemporal features and improves performance in PM2.5 long-term predictions. Results from real-world data analysis show that the proposed algorithm outperforms state-of-the-art existing prediction models in predicting PM2.5 levels over long durations. Compared to baseline models, EGCFC reduces RMSE by an average of 3.39%, decreases MAE by 4.83%, increases R2 by 4.89%, CSI by 3.13%, and lowers FAR by 11.39%. These indicate that EGCFC is an effective method for predicting trends in urban PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
10秒前
甜青提发布了新的文献求助10
13秒前
15秒前
迷人宛亦发布了新的文献求助10
20秒前
Hello应助迷人宛亦采纳,获得10
31秒前
40秒前
轻松听双发布了新的文献求助10
47秒前
空儒完成签到 ,获得积分10
47秒前
所所应助轻松听双采纳,获得10
58秒前
tongtong12345完成签到,获得积分10
58秒前
zhaoxi完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
Willow完成签到,获得积分10
1分钟前
Hello应助能不能不看论文采纳,获得10
1分钟前
Binbin完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
zznzn发布了新的文献求助10
2分钟前
小蘑菇应助kzf丶bryant采纳,获得10
2分钟前
iShine完成签到 ,获得积分10
2分钟前
计划完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
himes发布了新的文献求助10
2分钟前
JamesPei应助甜青提采纳,获得10
2分钟前
Owen应助LukeLion采纳,获得10
2分钟前
himes完成签到,获得积分10
2分钟前
2分钟前
李健应助麦麦采纳,获得10
2分钟前
2分钟前
LukeLion发布了新的文献求助10
3分钟前
甜青提发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
麦麦发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911770
关于积分的说明 15134204
捐赠科研通 4829956
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540222
关于科研通互助平台的介绍 1498407