Long-term Prediction Method for PM2.5 Concentration Using Edge Channel Graph Attention Network and Gating Closed-form Continuous-time Neural Networks

期限(时间) 门控 频道(广播) 计算机科学 GSM演进的增强数据速率 人工神经网络 图形 人工智能 模式识别(心理学) 生物系统 理论计算机科学 计算机网络 心理学 物理 神经科学 量子力学 生物
作者
Chen Zhang,Xiaofan Li,Hongyang Sheng,Ya Peng Shen,Wei Xie,Xuhui Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:189: 356-373 被引量:2
标识
DOI:10.1016/j.psep.2024.06.090
摘要

Fine particulate matter such as PM2.5 threatens significantly to the environment and human health, so it is essential to design a reliable long-term prediction method for PM2.5 concentrations. Existing long-term PM2.5 prediction models inadequately utilize urban spatial features, fail to consider the role of meteorological factors in PM2.5 levels, and overlook the interaction between PM2.5 concentrations in different cities. To tackle this issue, we propose two new models and integrate them. Firstly, we develop a spatial feature model (ECGAT) for extracting PM2.5 concentration among regions based on Graph Neural Networks (GNN), edge-channel mechanisms, and Graph Attention Convolution (GATConv). This model utilizes GNN to extract urban adjacency relationships and meteorological features, employs edge-channel mechanisms to recalculate weights for interactions between cities, and outputs spatial correlations through GATConv. Secondly, we propose Gating Closed-form Continuous-time Neural Networks (GCFC) as a temporal model to extract the PM2.5 concentration's temporal features. The fusion of these two models, named ECGAT-GCFC (EGCFC), enhances the model's capability to capture spatiotemporal features and improves performance in PM2.5 long-term predictions. Results from real-world data analysis show that the proposed algorithm outperforms state-of-the-art existing prediction models in predicting PM2.5 levels over long durations. Compared to baseline models, EGCFC reduces RMSE by an average of 3.39%, decreases MAE by 4.83%, increases R2 by 4.89%, CSI by 3.13%, and lowers FAR by 11.39%. These indicate that EGCFC is an effective method for predicting trends in urban PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
。。。完成签到,获得积分10
刚刚
奥特超曼应助ark861023采纳,获得10
刚刚
AAA电池批发顾总完成签到,获得积分10
2秒前
clocksoar完成签到,获得积分10
2秒前
jojodan完成签到,获得积分10
2秒前
3366完成签到,获得积分10
2秒前
2秒前
3秒前
沧海应助Aten采纳,获得10
3秒前
3秒前
3秒前
shunlibiye完成签到,获得积分10
4秒前
Novermber发布了新的文献求助10
4秒前
小乔同学完成签到,获得积分10
5秒前
金熙美完成签到,获得积分10
5秒前
床头经济学完成签到,获得积分10
5秒前
安静的幻竹完成签到,获得积分10
6秒前
背后的傥完成签到,获得积分10
6秒前
飞飞飞飞飞完成签到,获得积分10
6秒前
迷人寻冬发布了新的文献求助10
6秒前
ZYao65发布了新的文献求助10
6秒前
7秒前
HaHa007完成签到,获得积分10
7秒前
fs发布了新的文献求助10
8秒前
@@@发布了新的文献求助10
9秒前
yl完成签到,获得积分20
9秒前
9秒前
共享精神应助啦啦啦采纳,获得10
10秒前
10秒前
Novermber完成签到,获得积分20
10秒前
丘比特应助Xk采纳,获得10
10秒前
11秒前
小王完成签到,获得积分10
11秒前
kyleaa完成签到,获得积分10
11秒前
白凌珍完成签到,获得积分10
11秒前
负责小蜜蜂完成签到,获得积分10
12秒前
12秒前
科研牛马完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582