Long-term Prediction Method for PM2.5 Concentration Using Edge Channel Graph Attention Network and Gating Closed-form Continuous-time Neural Networks

期限(时间) 门控 频道(广播) 计算机科学 GSM演进的增强数据速率 人工神经网络 图形 人工智能 模式识别(心理学) 生物系统 理论计算机科学 计算机网络 心理学 物理 神经科学 生物 量子力学
作者
Chen Zhang,Xiaofan Li,Hongyang Sheng,Ya Peng Shen,Wei Xie,Xuhui Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:189: 356-373 被引量:2
标识
DOI:10.1016/j.psep.2024.06.090
摘要

Fine particulate matter such as PM2.5 threatens significantly to the environment and human health, so it is essential to design a reliable long-term prediction method for PM2.5 concentrations. Existing long-term PM2.5 prediction models inadequately utilize urban spatial features, fail to consider the role of meteorological factors in PM2.5 levels, and overlook the interaction between PM2.5 concentrations in different cities. To tackle this issue, we propose two new models and integrate them. Firstly, we develop a spatial feature model (ECGAT) for extracting PM2.5 concentration among regions based on Graph Neural Networks (GNN), edge-channel mechanisms, and Graph Attention Convolution (GATConv). This model utilizes GNN to extract urban adjacency relationships and meteorological features, employs edge-channel mechanisms to recalculate weights for interactions between cities, and outputs spatial correlations through GATConv. Secondly, we propose Gating Closed-form Continuous-time Neural Networks (GCFC) as a temporal model to extract the PM2.5 concentration's temporal features. The fusion of these two models, named ECGAT-GCFC (EGCFC), enhances the model's capability to capture spatiotemporal features and improves performance in PM2.5 long-term predictions. Results from real-world data analysis show that the proposed algorithm outperforms state-of-the-art existing prediction models in predicting PM2.5 levels over long durations. Compared to baseline models, EGCFC reduces RMSE by an average of 3.39%, decreases MAE by 4.83%, increases R2 by 4.89%, CSI by 3.13%, and lowers FAR by 11.39%. These indicate that EGCFC is an effective method for predicting trends in urban PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
王贤平发布了新的文献求助10
1秒前
3秒前
3秒前
Mic应助smh采纳,获得10
3秒前
Ava应助义气的妙松采纳,获得10
3秒前
天目琼花本花完成签到,获得积分10
3秒前
科研通AI6应助SWD采纳,获得10
3秒前
3秒前
Hakunamatata发布了新的文献求助10
3秒前
4秒前
一一完成签到,获得积分10
4秒前
drchen完成签到,获得积分10
4秒前
whiteside完成签到,获得积分10
4秒前
4秒前
大个应助KK采纳,获得10
4秒前
完美世界应助Zachary采纳,获得10
5秒前
5秒前
6秒前
可爱的函函应助CCS采纳,获得10
6秒前
老福贵儿应助小时候采纳,获得10
6秒前
7秒前
7秒前
7秒前
SonRisa发布了新的文献求助10
7秒前
ZZ完成签到,获得积分10
7秒前
8秒前
风趣凡阳完成签到,获得积分20
8秒前
8秒前
8秒前
周晨曦发布了新的文献求助10
8秒前
8秒前
8秒前
wouldrt完成签到 ,获得积分10
8秒前
8秒前
ellen发布了新的文献求助10
9秒前
烂漫青槐应助糖家未央采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430298
求助须知:如何正确求助?哪些是违规求助? 4543501
关于积分的说明 14187546
捐赠科研通 4461646
什么是DOI,文献DOI怎么找? 2446255
邀请新用户注册赠送积分活动 1437582
关于科研通互助平台的介绍 1414406