Bi-Objective Battery Electric Truck Dispatching Problem with Backhauls and Time Windows

卡车 电池(电) 汽车工程 计算机科学 运输工程 工程类 功率(物理) 物理 量子力学
作者
Dongbo Peng,Guoyuan Wu,Kanok Boriboonsomsin
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241246270
摘要

The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics, given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspective, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental impacts while maintaining economic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海绵体宝宝应助an采纳,获得10
1秒前
wwww完成签到,获得积分10
1秒前
1秒前
桐桐应助柔弱凡松采纳,获得10
1秒前
爆米花应助丶呆久自然萌采纳,获得10
2秒前
2秒前
wanyanjin应助流云采纳,获得10
2秒前
心花怒放发布了新的文献求助10
3秒前
DrYang发布了新的文献求助10
3秒前
3秒前
跑在颖完成签到,获得积分20
3秒前
希望天下0贩的0应助Jackson采纳,获得10
3秒前
徐徐发布了新的文献求助10
4秒前
落花生完成签到,获得积分10
4秒前
y123完成签到 ,获得积分10
4秒前
mnm完成签到,获得积分10
4秒前
4秒前
狂野雁丝应助小张张采纳,获得10
5秒前
qwt_hello关注了科研通微信公众号
5秒前
12彡完成签到,获得积分10
5秒前
虾仁发布了新的文献求助10
6秒前
6秒前
sx发布了新的文献求助10
6秒前
6秒前
陈尹蓝完成签到 ,获得积分10
6秒前
猪猪完成签到,获得积分20
6秒前
7秒前
luoyutian完成签到,获得积分10
7秒前
Harlotte驳回了Mars应助
7秒前
欣慰硬币发布了新的文献求助30
7秒前
7秒前
Owen应助心花怒放采纳,获得10
7秒前
kingwill应助DrYang采纳,获得20
7秒前
正直冰露发布了新的文献求助10
8秒前
Jenny应助小满采纳,获得10
8秒前
kangkang发布了新的文献求助10
8秒前
8秒前
8秒前
冷傲的嵩完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762