PSAEEGNet: pyramid squeeze attention mechanism-based CNN for single-trial EEG classification in RSVP task

计算机科学 脑电图 可视化快速呈现 模式识别(心理学) 人工智能 卷积神经网络 任务(项目管理) 语音识别 认知 心理学 神经科学 管理 经济
作者
Zijian Yuan,Qian Zhou,Baozeng Wang,Qi Zhang,Yang Yang,Yuwei Zhao,Yong Guo,Jin Zhou,Changyong Wang
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media SA]
卷期号:18 被引量:2
标识
DOI:10.3389/fnhum.2024.1385360
摘要

Introduction Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes. Methods Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level. Results Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 ( p < 0.05). Discussion These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate classification of single-trial EEG during RSVP tasks. Therefore, this model has the potential to significantly enhance the performance of target recognition systems based on EEG, contributing to the advancement and practical implementation of target recognition in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BK1BK22完成签到 ,获得积分10
刚刚
tjl发布了新的文献求助20
1秒前
郑qqqq发布了新的文献求助10
2秒前
我是老大应助ddd采纳,获得10
2秒前
2秒前
4秒前
4秒前
xff关注了科研通微信公众号
5秒前
5秒前
5秒前
谢雨霁发布了新的文献求助10
5秒前
txy完成签到,获得积分10
6秒前
Nanw关注了科研通微信公众号
6秒前
田様应助墨羽采纳,获得10
6秒前
山橘月完成签到,获得积分10
6秒前
秋吉儿完成签到,获得积分10
7秒前
7秒前
泡泡完成签到,获得积分10
9秒前
大个应助xushanqi采纳,获得10
9秒前
9秒前
linww完成签到,获得积分10
9秒前
issl完成签到,获得积分10
9秒前
在水一方应助舒心的元冬采纳,获得50
9秒前
bkagyin应助shaohua2011采纳,获得30
10秒前
胖胖应助RenSiyu采纳,获得10
10秒前
Lucille发布了新的文献求助10
10秒前
秋吉儿发布了新的文献求助10
10秒前
11秒前
细腻的歌曲完成签到,获得积分10
11秒前
11秒前
良辰应助wardwood采纳,获得10
12秒前
12秒前
12秒前
四文鱼发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
ddd完成签到,获得积分10
14秒前
拣尽南枝完成签到,获得积分10
14秒前
Gaopkid完成签到,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153