Damage diagnosis of plates and shells through modal parameters reconstruction using inverse finite-element method

情态动词 流离失所(心理学) 有限元法 结构健康监测 频域 领域(数学) 反向 反问题 傅里叶变换 水准点(测量) 转化(遗传学) 模态试验 声学 模态分析 算法 计算机科学 结构工程 数学 数学分析 工程类 几何学 材料科学 物理 心理治疗师 化学 心理学 生物化学 大地测量学 高分子化学 纯数学 基因 地理
作者
Muhammed Yavuz Belur,Adnan Kefal,Mohammad Amin Abdollahzadeh,Spilios D. Fassois
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (4): 2410-2427 被引量:8
标识
DOI:10.1177/14759217241249678
摘要

In this study, a new modal-based structural health monitoring (SHM) approach is proposed based on the inverse finite-element method (iFEM) to perform damage diagnosis of the plate and shell structures based on full-field modal parameters reconstructed from discrete sensor data. The iFEM formulation can effectively solve a shape sensing or deformation reconstruction problem, where changing displacements of the structure are predicted by minimizing a variational least squares error function of analytical and experimental discrete strains with respect to unknown displacements. Such a solution provides the time-domain response of the structures, which may be solely not enough to extract the dynamical properties of the structure for underlying the unhealthy conditions. To address this important gap, the iFEM is enhanced by processing the full-field displacement solution with fast Fourier transformation, enabling mechanical parameters to switch from time to frequency domain. This posterior step, named iFEM Modal Reconstruction (iFEM-MoRe), can recover full-field dynamical characteristics from the response discrete Fourier transformation of a structure for the investigation of unhealthy structural conditions and damage identification. In this regard, iFEM-MoRe allows the utilization of the entire time/frequency-domain response of structures for correlating modal/dynamical characteristics with structural anomalies. To verify the capability of the approach, intact and damaged cases of benchmark problems are solved. According to the results, it is demonstrated that iFEM-MoRe can predict highly precise natural frequencies just from discrete sensor data without loading/material information. Also, it is revealed that iFEM-MoRe can highly accurately reconstruct full-field mode shapes and diagnose damaged conditions by pinpointing alternated dynamical characteristics of structures as compared to intact parameters. Overall, the presented approach can serve as a complementary toolbox for vibration and/or statistical time series SHM methods to understand full-field modal characteristics of damaged cases just from a network of sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助dan1029采纳,获得10
刚刚
刚刚
1秒前
丘比特应助小乖采纳,获得10
1秒前
ll发布了新的文献求助10
1秒前
3秒前
把妹王发布了新的文献求助10
3秒前
包子发布了新的文献求助10
4秒前
开心惜梦完成签到,获得积分20
4秒前
4秒前
Lupin完成签到,获得积分10
4秒前
krkr完成签到,获得积分20
5秒前
小药童应助科研通管家采纳,获得10
5秒前
Tonson应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
文艺醉波发布了新的文献求助10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
一叶知秋应助科研通管家采纳,获得10
6秒前
hufan2441发布了新的文献求助10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
潇洒的血茗完成签到,获得积分10
6秒前
一叶知秋应助科研通管家采纳,获得10
6秒前
小药童应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
luswien发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940