Damage diagnosis of plates and shells through modal parameters reconstruction using inverse finite-element method

情态动词 流离失所(心理学) 有限元法 结构健康监测 频域 领域(数学) 反向 反问题 傅里叶变换 水准点(测量) 转化(遗传学) 模态试验 声学 模态分析 算法 计算机科学 结构工程 数学 数学分析 工程类 几何学 材料科学 物理 化学 大地测量学 高分子化学 基因 纯数学 心理学 地理 生物化学 心理治疗师
作者
Muhammed Yavuz Belur,Adnan Kefal,Mohammad Amin Abdollahzadeh,Spilios D. Fassois
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (4): 2410-2427 被引量:8
标识
DOI:10.1177/14759217241249678
摘要

In this study, a new modal-based structural health monitoring (SHM) approach is proposed based on the inverse finite-element method (iFEM) to perform damage diagnosis of the plate and shell structures based on full-field modal parameters reconstructed from discrete sensor data. The iFEM formulation can effectively solve a shape sensing or deformation reconstruction problem, where changing displacements of the structure are predicted by minimizing a variational least squares error function of analytical and experimental discrete strains with respect to unknown displacements. Such a solution provides the time-domain response of the structures, which may be solely not enough to extract the dynamical properties of the structure for underlying the unhealthy conditions. To address this important gap, the iFEM is enhanced by processing the full-field displacement solution with fast Fourier transformation, enabling mechanical parameters to switch from time to frequency domain. This posterior step, named iFEM Modal Reconstruction (iFEM-MoRe), can recover full-field dynamical characteristics from the response discrete Fourier transformation of a structure for the investigation of unhealthy structural conditions and damage identification. In this regard, iFEM-MoRe allows the utilization of the entire time/frequency-domain response of structures for correlating modal/dynamical characteristics with structural anomalies. To verify the capability of the approach, intact and damaged cases of benchmark problems are solved. According to the results, it is demonstrated that iFEM-MoRe can predict highly precise natural frequencies just from discrete sensor data without loading/material information. Also, it is revealed that iFEM-MoRe can highly accurately reconstruct full-field mode shapes and diagnose damaged conditions by pinpointing alternated dynamical characteristics of structures as compared to intact parameters. Overall, the presented approach can serve as a complementary toolbox for vibration and/or statistical time series SHM methods to understand full-field modal characteristics of damaged cases just from a network of sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的宛白完成签到,获得积分20
刚刚
2秒前
我崽了你发布了新的文献求助30
3秒前
4秒前
fanf完成签到,获得积分10
5秒前
完美世界应助mayun95采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
ashin17发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助cxw采纳,获得10
11秒前
11秒前
呼噜呼噜毛完成签到 ,获得积分10
13秒前
13秒前
烟花应助QinQin采纳,获得10
13秒前
JamesPei应助猪猪hero采纳,获得10
14秒前
14秒前
15秒前
黄颖完成签到,获得积分10
15秒前
17秒前
18秒前
CodeCraft应助Nora采纳,获得10
19秒前
灵巧帽子发布了新的文献求助20
20秒前
小吴同学发布了新的文献求助10
22秒前
黄芪2号完成签到,获得积分10
22秒前
22秒前
22秒前
Jes完成签到,获得积分10
23秒前
凶狠的棒棒糖关注了科研通微信公众号
23秒前
谦让雨柏完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
黄芪2号发布了新的文献求助10
25秒前
微笑翠桃发布了新的文献求助10
26秒前
浅蓝色的盛夏完成签到 ,获得积分10
27秒前
wen完成签到,获得积分10
27秒前
张123完成签到,获得积分10
29秒前
古月完成签到,获得积分10
29秒前
Cristina2024完成签到,获得积分10
30秒前
ssy发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716