Integrating deep learning techniques for personalized learning pathways in higher education

学习分析 个性化学习 计算机科学 分析 深度学习 人工智能 高等教育 捆绑 学生参与度 大数据 数据科学 教学方法 数学教育 开放式学习 心理学 合作学习 政治学 法学 操作系统
作者
Fawad Naseer,Muhammad Nasir Khan,Muhammad Tahir,Abdullah Addas,Syed Muhammad Haider Aejaz
出处
期刊:Heliyon [Elsevier]
卷期号:10 (11): e32628-e32628 被引量:6
标识
DOI:10.1016/j.heliyon.2024.e32628
摘要

The rapid improvement of artificial intelligence (AI) in the educational domain has opened new possibilities for enhancing the learning experiences for students. This research discusses the critical need for personalized education in higher education by integrating deep learning (DL) techniques to create customized learning pathways for students. This research intends to bridge the gap between constant educational content and dynamic student needs. This research presents an AI-driven adaptive learning platform implemented across four different courses and 300 students at a university in Faisalabad-Pakistan. A controlled experiment compares student outcomes between those using the AI platform and those undergoing traditional instruction. Quantitative results demonstrate a 25 % improvement in grades, test scores, and engagement for the AI group, with a statistical significance of a p-value of 0.00045. Qualitative feedback highlights enhanced experiences attributed to personalized pathways. The DL analysis of student performance data highlights key parameters, including enhanced learning outcomes and engagement metrices over time. Surveys reveal increased satisfaction compared to one-size-fits-all content. Unlike prior AI research lacking rigorous validation, our methodology and significant results deliver a concrete framework for institutions to implement personalized, AI-driven education at scale. This data-driven approach builds on previous attempts by tying adaptations to actual student needs, yielding measurable improvements in key outcomes. Overall, this work empirically validates that AI platforms leveraging robust analytics to provide customized and adaptive learning can significantly enhance student academic performance, engagement, and satisfaction compared to traditional approaches. These findings have insightful consequences for the future of higher education. The research contributes to the growing demand for AI in education research and provides a practical framework for institutions seeking to implement more adaptive and student-centric teaching methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huimin完成签到,获得积分10
刚刚
星野完成签到,获得积分20
1秒前
123发布了新的文献求助20
2秒前
wwxd完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助crazy采纳,获得10
4秒前
4秒前
5秒前
昊昊发布了新的文献求助10
5秒前
bkagyin应助赵赵采纳,获得30
6秒前
Camellia完成签到,获得积分10
6秒前
7秒前
7秒前
冷艳三娘发布了新的文献求助10
8秒前
欣喜大地完成签到 ,获得积分10
8秒前
8秒前
清风明月完成签到,获得积分10
9秒前
sky关闭了sky文献求助
10秒前
风中千萍发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
慕青应助傻甘采纳,获得10
12秒前
小费发布了新的文献求助30
12秒前
chizhi发布了新的文献求助10
12秒前
12秒前
13秒前
冷艳三娘完成签到,获得积分20
13秒前
小朋友完成签到,获得积分10
13秒前
清风明月发布了新的文献求助10
13秒前
天天快乐应助ann采纳,获得30
16秒前
乐乐应助酷炫的毛巾采纳,获得10
16秒前
猪猪侠发布了新的文献求助10
17秒前
下雨不愁的班班完成签到,获得积分20
18秒前
陈航发布了新的文献求助10
20秒前
Finger发布了新的文献求助10
20秒前
风中千萍完成签到,获得积分10
22秒前
依然灬聆听完成签到,获得积分10
24秒前
SciGPT应助ChenSSS采纳,获得10
25秒前
俭朴的裘完成签到,获得积分10
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340146
求助须知:如何正确求助?哪些是违规求助? 2968185
关于积分的说明 8632667
捐赠科研通 2647742
什么是DOI,文献DOI怎么找? 1449782
科研通“疑难数据库(出版商)”最低求助积分说明 671543
邀请新用户注册赠送积分活动 660528