亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive fusion of different platform point cloud with improved particle swarm optimization and supervoxels

粒子群优化 点云 计算机视觉 人工智能 融合 计算机科学 点(几何) 云计算 地理 遥感 算法 数学 几何学 操作系统 语言学 哲学
作者
Zhiyuan Li,Fengxiang Jin,Jian Wang,Zhenyu Zhang,Lei Zhu,Wenxiao Sun,Xiaohong Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103934-103934
标识
DOI:10.1016/j.jag.2024.103934
摘要

Fusion of point cloud from different platforms is crucial for enhancing spatial information completeness in large-scale scenes, particularly in urban 3D modeling. To address redundancy, noise, and accuracy degradation in direct registration of point cloud across platforms, we propose an adaptive fusion method utilizing supervoxels. Initially, a high-precision point cloud is selected as the reference point cloud (RPC),and we apply a coarse-to-fine registration approach to unify the RPC and the target point cloud (TPC). Registration parameters are optimized using Improved Particle Swarm Optimization (IPSO), enhancing automation and precision of the fine registration. Subsequently, supervoxels are constructed for the registered RPC and TPC. Finally, within each corresponding supervoxel, redundancy and noise are eliminated by applying alpha-shape and Laplacian, considering the data quality and density distribution of the RPC. Experimental validation was conducted with data acquired from three distinct platforms. The proposed method significantly enhances registration precision. Compared to RANSAC-ICP, our method reduced average RMSE by 36.35%, average MAE by 34.85%, and average Frobenius Norm by 84.48% across three experimental groups. The proposed fusion method improves data completeness, reducing the point cloud count by about 30% compared to direct registration. Moreover, it effectively preserves the detailed features of the fused point cloud, serving as accurate data sources for constructing 3D urban models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助盛夏如花采纳,获得10
1秒前
joeqin完成签到,获得积分10
7秒前
zachary009完成签到,获得积分10
10秒前
14秒前
LYCORIS完成签到,获得积分10
16秒前
喜悦的小土豆完成签到 ,获得积分10
20秒前
zachary009发布了新的文献求助10
20秒前
21秒前
科研通AI6应助殷楷霖采纳,获得10
21秒前
丘比特应助吱吱吱吱采纳,获得10
22秒前
CipherSage应助一见喜采纳,获得10
22秒前
siriuswings发布了新的文献求助10
27秒前
30秒前
30秒前
领导范儿应助浪里白条采纳,获得10
32秒前
34秒前
爆米花应助遇见馅儿饼采纳,获得10
34秒前
一见喜发布了新的文献求助10
36秒前
殷楷霖发布了新的文献求助10
38秒前
41秒前
遇见馅儿饼完成签到,获得积分10
44秒前
一见喜完成签到,获得积分10
45秒前
45秒前
46秒前
BA1完成签到,获得积分10
49秒前
傻丢发布了新的文献求助10
51秒前
小马甲应助爱听歌的明雪采纳,获得30
56秒前
殷楷霖发布了新的文献求助10
1分钟前
ytc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
乐乐应助天才幸运鱼采纳,获得10
1分钟前
小坚果发布了新的文献求助10
1分钟前
吱吱吱吱发布了新的文献求助10
1分钟前
1分钟前
CR应助deansy采纳,获得10
1分钟前
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644480
求助须知:如何正确求助?哪些是违规求助? 4764238
关于积分的说明 15025149
捐赠科研通 4802869
什么是DOI,文献DOI怎么找? 2567659
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484792