Surface States of Mo-Doped BiVO4 Nanoparticle-Based Photoanodes for Photoelectrochemical Degradation of Chloramphenicol

X射线光电子能谱 材料科学 兴奋剂 降级(电信) 电解质 纳米颗粒 表面状态 化学工程 纳米技术 电极 光电子学 化学 电信 几何学 工程类 物理化学 计算机科学 数学 曲面(拓扑)
作者
Wanyi Su,Zizheng Lu,Qin Shi,Cixin Cheng,Chenxu Liu,Chunyan Lu,Huxin Xie,Bao Lu,Kunshan Huang,Min Xu,Chunyan Xu,Honghui Pan,Chuanqi Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (12): 14232-14241 被引量:1
标识
DOI:10.1021/acsanm.4c01743
摘要

Mo-doped BiVO4 (Mo-BiVO4) nanoparticle-based photoanodes were fabricated using an electrodeposition–calcination method to investigate the influence of Mo doping on the surface states (SS) for the photoelectrocatalytic degradation performance of chloramphenicol (CAP) in water. The characterization results show that the prepared samples were nanostructured BiVO4. Mo doping with a low concentration has a negligible effect on the surface nanomorphology, crystal structure, and light absorption characteristics. CAP as an efficient organic scavenger can undergo degradation via the photoelectron trapping/detrapping process of the V5+/V4+ redox system under illumination. The photoelectron trapping process of V5+ to V4+ exhibited an increase and then a decrease with increasing Mo doping concentrations. The introduction of suitable Mo into the BiVO4 can tune the photoelectron trapping process to form the surface states for adsorbing CAP (SSCAP). Furthermore, Mo doping produces more oxygen vacancies (Vo) on the electrode surface, which are in favor of trapping photogenerated holes, thereby promoting the charge transfer efficiency at the semiconductor–electrolyte interface (SEI). These multiple effects process the highest charge transfer efficiency (reaching 96%) for CAP degradation when the Mo doping content is 1.07 wt %. This work gives a further understanding of the enhancement of photoelectrocatalytic degradation performance caused by Mo doping in the field of charge transfer at SEI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助nam采纳,获得10
刚刚
刚刚
thy完成签到,获得积分10
1秒前
呜呜呜发布了新的文献求助10
1秒前
felix完成签到,获得积分10
1秒前
汉堡包应助111采纳,获得10
1秒前
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得70
1秒前
2秒前
优美紫槐应助科研通管家采纳,获得10
2秒前
2秒前
Naomi发布了新的文献求助10
2秒前
萝卜应助科研通管家采纳,获得10
2秒前
壮观雅容完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
hhl完成签到,获得积分10
2秒前
2秒前
小流星完成签到,获得积分10
2秒前
2秒前
萝卜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
萝卜应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助小龚采纳,获得10
3秒前
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
优美紫槐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
萝卜应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759899
求助须知:如何正确求助?哪些是违规求助? 5522591
关于积分的说明 15395720
捐赠科研通 4896858
什么是DOI,文献DOI怎么找? 2633939
邀请新用户注册赠送积分活动 1581980
关于科研通互助平台的介绍 1537467