R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution

高光谱成像 鉴别器 生成对抗网络 人工智能 计算机视觉 计算机科学 图像分辨率 对偶(语法数字) 对抗制 分辨率(逻辑) 显微镜 图像(数学) 模式识别(心理学) 光学 物理 电信 艺术 文学类 探测器
作者
Jiaxuan Liu,Hui Zhang,Jiang-Huai Tian,Yingjian Su,Yurong Chen,Yaonan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412033
摘要

High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhing完成签到,获得积分10
刚刚
风息完成签到,获得积分10
刚刚
1秒前
2秒前
wyj完成签到,获得积分10
2秒前
小吴同志发布了新的文献求助10
2秒前
2秒前
jinjing完成签到,获得积分10
2秒前
林士发布了新的文献求助10
2秒前
spring发布了新的文献求助10
3秒前
出其东门完成签到,获得积分10
3秒前
5秒前
脑洞疼应助哦豁采纳,获得10
5秒前
漫天繁星发布了新的文献求助10
5秒前
5秒前
5秒前
小慕斯发布了新的文献求助30
6秒前
眼睛大雨筠应助轻松思枫采纳,获得30
6秒前
yqzhang完成签到,获得积分10
6秒前
君陌发布了新的文献求助10
7秒前
Juanita发布了新的文献求助10
7秒前
wanci应助喻盐采纳,获得10
8秒前
ys118完成签到 ,获得积分10
8秒前
BEI发布了新的文献求助10
8秒前
不要慌完成签到 ,获得积分10
9秒前
limz发布了新的文献求助10
9秒前
香蕉觅云应助生5clean采纳,获得30
9秒前
9秒前
挽风风风风完成签到,获得积分10
9秒前
10秒前
10秒前
yoko完成签到,获得积分10
11秒前
长长的名字完成签到 ,获得积分10
11秒前
小吴同志完成签到,获得积分10
11秒前
黑犬发布了新的文献求助10
12秒前
aixuexi*完成签到,获得积分10
12秒前
12秒前
Yuki完成签到,获得积分10
13秒前
传奇3应助博修采纳,获得30
13秒前
万能图书馆应助cherish采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149