R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution

高光谱成像 鉴别器 生成对抗网络 人工智能 计算机视觉 计算机科学 图像分辨率 对偶(语法数字) 对抗制 分辨率(逻辑) 显微镜 图像(数学) 模式识别(心理学) 光学 物理 电信 艺术 文学类 探测器
作者
Jiaxuan Liu,Hui Zhang,Jiang-Huai Tian,Yingjian Su,Yurong Chen,Yaonan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412033
摘要

High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orangel完成签到,获得积分10
1秒前
半壶月色半边天完成签到 ,获得积分10
2秒前
tmpstlml发布了新的文献求助10
2秒前
3秒前
3秒前
不安饼干完成签到 ,获得积分10
5秒前
活泼的飞鸟完成签到,获得积分10
5秒前
6秒前
xuyun发布了新的文献求助10
6秒前
6秒前
zzcres完成签到,获得积分10
8秒前
eeeee完成签到 ,获得积分10
8秒前
乐观德地完成签到,获得积分10
9秒前
大个应助yf_zhu采纳,获得10
9秒前
llk发布了新的文献求助10
10秒前
一只大肥猫完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
12秒前
12秒前
科研通AI5应助GGG采纳,获得10
13秒前
13秒前
15秒前
Ann发布了新的文献求助20
15秒前
15秒前
buno应助duxinyue采纳,获得10
15秒前
xlj发布了新的文献求助10
16秒前
16秒前
可爱的函函应助zhen采纳,获得10
17秒前
研友_VZG7GZ应助dingdong采纳,获得10
18秒前
18秒前
李成恩完成签到 ,获得积分10
19秒前
心碎的黄焖鸡完成签到 ,获得积分10
19秒前
琪琪扬扬发布了新的文献求助10
20秒前
21秒前
21秒前
宗磬完成签到,获得积分10
22秒前
NexusExplorer应助搞怪不言采纳,获得10
23秒前
科研通AI5应助一天八杯水采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808