亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution

高光谱成像 鉴别器 生成对抗网络 人工智能 计算机视觉 计算机科学 图像分辨率 对偶(语法数字) 对抗制 分辨率(逻辑) 显微镜 图像(数学) 模式识别(心理学) 光学 物理 电信 艺术 文学类 探测器
作者
Jiaxuan Liu,Hui Zhang,Jiang-Huai Tian,Yingjian Su,Yurong Chen,Yaonan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412033
摘要

High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiko完成签到,获得积分10
10秒前
hmhu完成签到,获得积分10
12秒前
KE关注了科研通微信公众号
13秒前
16秒前
快乐老太发布了新的文献求助10
19秒前
21秒前
24秒前
Bazinga完成签到,获得积分10
33秒前
KE发布了新的文献求助30
34秒前
jimmy_bytheway完成签到,获得积分0
35秒前
35秒前
charm完成签到,获得积分10
37秒前
dilmurat10发布了新的文献求助10
42秒前
潇洒青文发布了新的文献求助10
42秒前
46秒前
Owen应助西瓜撞地球采纳,获得10
51秒前
54秒前
57秒前
59秒前
hmhu发布了新的文献求助10
1分钟前
zhang_23发布了新的文献求助10
1分钟前
江湖小妖完成签到 ,获得积分10
1分钟前
nipanpan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zhang_23发布了新的文献求助10
1分钟前
dilmurat10发布了新的文献求助10
1分钟前
深情依霜完成签到,获得积分10
1分钟前
小柯完成签到,获得积分10
1分钟前
dingm2完成签到 ,获得积分10
1分钟前
fhznuli完成签到,获得积分10
1分钟前
nipanpan完成签到,获得积分10
1分钟前
1分钟前
酷酷的爆米花完成签到,获得积分10
1分钟前
1分钟前
大个应助fhznuli采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
共享精神应助橘子味汽水采纳,获得10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877212
关于积分的说明 8198498
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374537
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774