R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution

高光谱成像 鉴别器 生成对抗网络 人工智能 计算机视觉 计算机科学 图像分辨率 对偶(语法数字) 对抗制 分辨率(逻辑) 显微镜 图像(数学) 模式识别(心理学) 光学 物理 电信 艺术 文学类 探测器
作者
Jiaxuan Liu,Hui Zhang,Jiang-Huai Tian,Yingjian Su,Yurong Chen,Yaonan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3412033
摘要

High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助外向的秋珊采纳,获得10
刚刚
冷艳的纸鹤完成签到,获得积分10
刚刚
QQ完成签到,获得积分10
1秒前
阿啵呲嘚呃of咯完成签到,获得积分10
1秒前
Liooo完成签到 ,获得积分10
1秒前
anya完成签到,获得积分10
1秒前
Donby完成签到,获得积分10
2秒前
benj完成签到,获得积分10
2秒前
侯长秀完成签到 ,获得积分10
3秒前
3秒前
顾矜应助李小小采纳,获得10
3秒前
小蛤蟆完成签到,获得积分10
3秒前
3秒前
4秒前
动听衬衫发布了新的文献求助10
4秒前
11111111111完成签到,获得积分10
4秒前
黑芝麻丸关注了科研通微信公众号
4秒前
4秒前
lds发布了新的文献求助10
5秒前
美好眼神完成签到,获得积分10
6秒前
粗心的忆山完成签到,获得积分10
6秒前
lp完成签到,获得积分10
6秒前
6秒前
7秒前
ppat5012完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
跋扈完成签到,获得积分10
8秒前
孟严青完成签到,获得积分0
8秒前
小白完成签到,获得积分10
8秒前
illusion2019举报认真的恶天求助涉嫌违规
8秒前
8秒前
8秒前
傅逊完成签到,获得积分10
8秒前
Criminology34应助动听衬衫采纳,获得80
9秒前
仙峰水龙发布了新的文献求助10
9秒前
苹果萧完成签到 ,获得积分10
9秒前
9秒前
超帅沂发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315937
求助须知:如何正确求助?哪些是违规求助? 4458488
关于积分的说明 13870596
捐赠科研通 4348245
什么是DOI,文献DOI怎么找? 2388169
邀请新用户注册赠送积分活动 1382240
关于科研通互助平台的介绍 1351627