R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution

高光谱成像 鉴别器 生成对抗网络 人工智能 计算机视觉 计算机科学 图像分辨率 对偶(语法数字) 对抗制 分辨率(逻辑) 显微镜 图像(数学) 模式识别(心理学) 光学 物理 电信 艺术 文学类 探测器
作者
Jiaxuan Liu,Hui Zhang,Jiang-Huai Tian,Yingjian Su,Yurong Chen,Yaonan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3412033
摘要

High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到,获得积分10
1秒前
1秒前
2秒前
彭于晏应助勇敢的心采纳,获得10
3秒前
3秒前
任某人发布了新的文献求助10
3秒前
4秒前
李健的粉丝团团长应助reai采纳,获得10
4秒前
4秒前
李健应助纯真的德地采纳,获得10
4秒前
4秒前
Gouo完成签到 ,获得积分10
5秒前
5秒前
6秒前
柔弱思卉完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
大方的芸发布了新的文献求助10
7秒前
MonicaR完成签到,获得积分10
8秒前
8秒前
粗心的墨镜完成签到,获得积分10
9秒前
9秒前
Maestro_S发布了新的文献求助10
10秒前
wwwq发布了新的文献求助10
10秒前
liuying发布了新的文献求助10
10秒前
XinChenLee发布了新的文献求助10
10秒前
10秒前
ZZ完成签到 ,获得积分10
11秒前
hokin33发布了新的文献求助30
11秒前
jyk完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
一期一会发布了新的文献求助30
14秒前
英俊皮卡丘完成签到,获得积分10
14秒前
NexusExplorer应助芋头采纳,获得10
15秒前
任某人完成签到,获得积分10
16秒前
小叶同学完成签到,获得积分10
16秒前
勇敢的心发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300