Recurrent Multiscale Feature Modulation for Geometry Consistent Depth Learning

人工智能 特征(语言学) 计算机科学 模式识别(心理学) 计算机视觉 几何学 计算几何 数学 语言学 哲学
作者
Zhongkai Zhou,Xinnan Fan,Pengfei Shi,Yuanxue Xin,Dongliang Duan,Liuqing Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 9551-9566
标识
DOI:10.1109/tpami.2024.3420165
摘要

The U-Net-like coarse-to-fine network design is currently the dominant choice for dense prediction tasks. Although this design can often achieve competitive performance, it suffers from some inherent limitations, such as training error propagation from low to high resolution and the dependency on the deeper and heavier backbones. To design an effective network that performs better, we instead propose Recurrent Multiscale Feature Modulation (R-MSFM), a new lightweight network design for self-supervised monocular depth estimation. R-MSFM extracts per-pixel features, builds a multiscale feature modulation module, and performs recurrent depth refinement through a parameter-shared decoder at a fixed resolution. This network design enables our R-MSFM to maintain a more lightweight architecture and fundamentally avoid error propagation caused by the coarse-to-fine design. Furthermore, we introduce the mask geometry consistency loss to facilitate our R-MSFM for geometry consistent depth learning. This loss penalizes the inconsistency of the estimated depths between adjacent views within the nonoccluded and nonstationary regions. Experimental results demonstrate the superiority of our proposed R-MSFM both at model size and inference speed, and show state-of-the-art results on two datasets: KITTI and Make3D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doki完成签到,获得积分10
刚刚
成就鲂发布了新的文献求助30
刚刚
Kenzonvay发布了新的文献求助10
刚刚
稳重的小杨完成签到,获得积分10
1秒前
尔尔完成签到,获得积分10
1秒前
djiwisksk66应助VDC采纳,获得10
2秒前
拓力库海完成签到,获得积分10
3秒前
4Xchua发布了新的文献求助10
4秒前
7秒前
Tigher完成签到,获得积分10
9秒前
jinshijie完成签到 ,获得积分10
9秒前
coollittlemouse完成签到,获得积分10
9秒前
10秒前
11秒前
星辰大海应助Marco_hxkq采纳,获得10
12秒前
12秒前
13秒前
哇咔咔完成签到,获得积分10
13秒前
若鱼关注了科研通微信公众号
13秒前
淡然觅海完成签到 ,获得积分10
14秒前
2024220513发布了新的文献求助10
15秒前
玩命的谷槐完成签到,获得积分10
18秒前
善学以致用应助陈晓真采纳,获得10
20秒前
在水一方应助liuguohua126采纳,获得10
20秒前
扶余山本完成签到,获得积分10
21秒前
Hermione完成签到,获得积分10
21秒前
大海完成签到,获得积分10
22秒前
22秒前
23秒前
扶余山本发布了新的文献求助10
23秒前
24秒前
nobody完成签到,获得积分10
25秒前
wanci应助深情的雁露采纳,获得10
26秒前
xiaoyan完成签到,获得积分20
26秒前
26秒前
28秒前
29秒前
29秒前
29秒前
头发乱了发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089