A Method for Anomaly Detection in Power Energy Topology Graph Data Based on Domain Knowledge Graph and Graph Neural Networks

计算机科学 图形 拓扑(电路) 理论计算机科学 数学 组合数学
作者
Ming Chen,Sen Yang,Wenbo Dai,Zisheng Wang,Jun Xu
标识
DOI:10.1109/bigdatasecurity62737.2024.00026
摘要

With the rapid development of power energy systems, anomaly detection in power energy topology graph data has become increasingly important. However, existing methods often suffer from the lack of domain knowledge and the limited ability to capture complex correlations within the graph data. To address these challenges, this paper proposes a novel method for anomaly detection in power energy topology graph data based on domain knowledge graph and Graph Neural Network (GNN). Firstly, we construct a domain knowledge graph that incorporates expert knowledge and prior information about power energy systems. Then, we utilize the GNN model to learn the representations of nodes and edges in the graph data, capturing their complex relationships. Finally, we apply anomaly detection algorithms on the learned graph representations to identify potential anomalies in power energy topology. Experimental results on realworld power energy datasets demonstrate the effectiveness and efficiency of our proposed method. In conclusion, our method provides a promising approach for more accurate and reliable anomaly detection in power energy topology, contributing to the improvement of power system security and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WizBLue发布了新的文献求助10
刚刚
刚刚
十六夜彦发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
隐形曼青应助热热采纳,获得10
2秒前
whyren完成签到,获得积分10
2秒前
Dr菜完成签到,获得积分10
2秒前
湖畔望月寒完成签到,获得积分20
2秒前
3秒前
雷小仙儿完成签到,获得积分10
3秒前
3秒前
受伤的怀绿完成签到,获得积分10
3秒前
3秒前
轻易完成签到,获得积分20
4秒前
执着亿先完成签到 ,获得积分10
4秒前
4秒前
science完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
今后应助复杂黑夜采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Meyako应助小魏采纳,获得10
5秒前
sofia发布了新的文献求助10
5秒前
6秒前
6秒前
火山完成签到 ,获得积分10
6秒前
务实的厉发布了新的文献求助10
6秒前
6秒前
摸鱼鱼发布了新的文献求助10
6秒前
6秒前
希望天下0贩的0应助pyh采纳,获得10
7秒前
7秒前
大气问枫发布了新的文献求助10
7秒前
NN发布了新的文献求助30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721