A Method for Anomaly Detection in Power Energy Topology Graph Data Based on Domain Knowledge Graph and Graph Neural Networks

计算机科学 图形 拓扑(电路) 理论计算机科学 数学 组合数学
作者
Ming Chen,Sen Yang,Wenbo Dai,Zisheng Wang,Jun Xu
标识
DOI:10.1109/bigdatasecurity62737.2024.00026
摘要

With the rapid development of power energy systems, anomaly detection in power energy topology graph data has become increasingly important. However, existing methods often suffer from the lack of domain knowledge and the limited ability to capture complex correlations within the graph data. To address these challenges, this paper proposes a novel method for anomaly detection in power energy topology graph data based on domain knowledge graph and Graph Neural Network (GNN). Firstly, we construct a domain knowledge graph that incorporates expert knowledge and prior information about power energy systems. Then, we utilize the GNN model to learn the representations of nodes and edges in the graph data, capturing their complex relationships. Finally, we apply anomaly detection algorithms on the learned graph representations to identify potential anomalies in power energy topology. Experimental results on realworld power energy datasets demonstrate the effectiveness and efficiency of our proposed method. In conclusion, our method provides a promising approach for more accurate and reliable anomaly detection in power energy topology, contributing to the improvement of power system security and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
云那边的山完成签到,获得积分10
1秒前
tf发布了新的文献求助10
2秒前
烟花应助苹果文博采纳,获得10
2秒前
赘婿应助超级的伟泽采纳,获得10
3秒前
默默新波发布了新的文献求助10
4秒前
Frank发布了新的文献求助10
4秒前
4秒前
王土豆发布了新的文献求助10
4秒前
玉Y发布了新的文献求助10
5秒前
5秒前
zz完成签到,获得积分10
5秒前
5秒前
张若愚完成签到 ,获得积分10
6秒前
8秒前
顾矜应助DingZC采纳,获得10
9秒前
研友_8KKmR8发布了新的文献求助10
10秒前
等待的寒松完成签到,获得积分10
11秒前
11秒前
11秒前
leilei发布了新的文献求助10
12秒前
研友_VZG7GZ应助lsq采纳,获得10
13秒前
翁忘幽发布了新的文献求助10
14秒前
Ava应助tf采纳,获得10
14秒前
14秒前
Seamily应助谨慎的寒松采纳,获得10
14秒前
pluto应助谨慎的寒松采纳,获得10
14秒前
pluto应助谨慎的寒松采纳,获得10
14秒前
爆米花应助谨慎的寒松采纳,获得10
14秒前
pluto应助谨慎的寒松采纳,获得10
14秒前
xzy998应助谨慎的寒松采纳,获得10
15秒前
Seamily应助谨慎的寒松采纳,获得200
15秒前
pluto应助谨慎的寒松采纳,获得10
15秒前
SciGPT应助谨慎的寒松采纳,获得10
15秒前
xzy998应助谨慎的寒松采纳,获得10
15秒前
顾矜应助LL采纳,获得10
16秒前
科研通AI6.1应助傅剑寒采纳,获得10
16秒前
ee发布了新的文献求助10
17秒前
研友_8KKmR8完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736800
求助须知:如何正确求助?哪些是违规求助? 5368437
关于积分的说明 15334001
捐赠科研通 4880560
什么是DOI,文献DOI怎么找? 2622896
邀请新用户注册赠送积分活动 1571792
关于科研通互助平台的介绍 1528628