A Method for Anomaly Detection in Power Energy Topology Graph Data Based on Domain Knowledge Graph and Graph Neural Networks

计算机科学 图形 拓扑(电路) 理论计算机科学 数学 组合数学
作者
Ming Chen,Sen Yang,Wenbo Dai,Zisheng Wang,Jun Xu
标识
DOI:10.1109/bigdatasecurity62737.2024.00026
摘要

With the rapid development of power energy systems, anomaly detection in power energy topology graph data has become increasingly important. However, existing methods often suffer from the lack of domain knowledge and the limited ability to capture complex correlations within the graph data. To address these challenges, this paper proposes a novel method for anomaly detection in power energy topology graph data based on domain knowledge graph and Graph Neural Network (GNN). Firstly, we construct a domain knowledge graph that incorporates expert knowledge and prior information about power energy systems. Then, we utilize the GNN model to learn the representations of nodes and edges in the graph data, capturing their complex relationships. Finally, we apply anomaly detection algorithms on the learned graph representations to identify potential anomalies in power energy topology. Experimental results on realworld power energy datasets demonstrate the effectiveness and efficiency of our proposed method. In conclusion, our method provides a promising approach for more accurate and reliable anomaly detection in power energy topology, contributing to the improvement of power system security and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
Return应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Return应助科研通管家采纳,获得10
1秒前
科目三应助lk采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
求助人员应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2633148059完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
幼儿园老大完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
5秒前
shepherd应助libe采纳,获得30
5秒前
576-576完成签到 ,获得积分10
5秒前
科目三应助体贴凌柏采纳,获得10
5秒前
5秒前
splendid完成签到,获得积分10
5秒前
7秒前
Tu发布了新的文献求助10
7秒前
传奇3应助123456采纳,获得10
8秒前
llj完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
李小晴天完成签到 ,获得积分10
12秒前
llj发布了新的文献求助10
12秒前
12秒前
大黄完成签到,获得积分10
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049