A Method for Anomaly Detection in Power Energy Topology Graph Data Based on Domain Knowledge Graph and Graph Neural Networks

计算机科学 图形 拓扑(电路) 理论计算机科学 数学 组合数学
作者
Ming Chen,Sen Yang,Wenbo Dai,Zisheng Wang,Jun Xu
标识
DOI:10.1109/bigdatasecurity62737.2024.00026
摘要

With the rapid development of power energy systems, anomaly detection in power energy topology graph data has become increasingly important. However, existing methods often suffer from the lack of domain knowledge and the limited ability to capture complex correlations within the graph data. To address these challenges, this paper proposes a novel method for anomaly detection in power energy topology graph data based on domain knowledge graph and Graph Neural Network (GNN). Firstly, we construct a domain knowledge graph that incorporates expert knowledge and prior information about power energy systems. Then, we utilize the GNN model to learn the representations of nodes and edges in the graph data, capturing their complex relationships. Finally, we apply anomaly detection algorithms on the learned graph representations to identify potential anomalies in power energy topology. Experimental results on realworld power energy datasets demonstrate the effectiveness and efficiency of our proposed method. In conclusion, our method provides a promising approach for more accurate and reliable anomaly detection in power energy topology, contributing to the improvement of power system security and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djdsg发布了新的文献求助10
刚刚
桐桐应助momo采纳,获得10
1秒前
嗨e完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
llbeyond发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
hb完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
10秒前
sunny心晴完成签到 ,获得积分10
11秒前
11秒前
丘比特应助xhj采纳,获得10
12秒前
科研垃圾完成签到,获得积分10
13秒前
13秒前
林夕少爷完成签到,获得积分10
13秒前
14秒前
guocan发布了新的文献求助10
15秒前
15秒前
露露发布了新的文献求助10
15秒前
momo发布了新的文献求助10
16秒前
啸傲完成签到,获得积分10
18秒前
18秒前
Criminology34应助MiManchi采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
晨曦完成签到,获得积分10
20秒前
22秒前
xhj发布了新的文献求助10
23秒前
我是老大应助啸傲采纳,获得10
23秒前
浮游应助7777采纳,获得10
23秒前
wuhaixia发布了新的文献求助20
24秒前
24秒前
whitesheep发布了新的文献求助10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5102955
求助须知:如何正确求助?哪些是违规求助? 4313670
关于积分的说明 13441186
捐赠科研通 4141772
什么是DOI,文献DOI怎么找? 2269328
邀请新用户注册赠送积分活动 1272093
关于科研通互助平台的介绍 1208490