亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Transit Frequency Setting Problem With Demand Uncertainty

计算机科学 数学优化 数学
作者
Xiaotong Guo,Baichuan Mo,Haris N. Koutsopoulos,Shenhao Wang,Jinhua Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tits.2024.3395050
摘要

Public transit systems are the backbone of urban mobility systems in the era of urbanization. The design of transit schedules is important for the efficient and sustainable operation of public transit. However, limited studies have considered demand uncertainties when designing transit schedules. To better address demand uncertainty issues inherent in public transit systems, this paper utilizes the robust optimization (RO) framework to generate robust transit schedules against demand uncertainty. A nominal (non-robust) optimization model for the transit frequency setting problem (TFSP) under a single transit line setting is first proposed. The model is then extended to the RO-based formulation to incorporate demand uncertainty, which has not been considered in the literature. The large-scale origin-destination (OD) matrices for real-world transit problems bring computational challenges in solving the optimization problem. To efficiently generate robust transit schedules, a Transit Downsizing (TD) approach is proposed to reduce the dimensionality of the problem. The proposed models are tested with real-world transit lines and data from the Chicago Transit Authority (CTA). Meanwhile, a stochastic programming (SP) framework is used to construct a benchmark stochastic TFSP model. Compared to the current transit schedule implemented by the CTA, the nominal TFSP model without considering demand uncertainty reduces passengers' wait times while increasing in-vehicle travel times. After incorporating demand uncertainty, both stochastic and robust TFSP models reduce passengers' wait times and in-vehicle travel times simultaneously. The robust transit schedules outperform the benchmark stochastic transit schedules by reducing both wait and in-vehicle travel times when demand is significantly uncertain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大聪明完成签到,获得积分10
2秒前
Epiphany发布了新的文献求助10
4秒前
大个应助cbt512133采纳,获得10
7秒前
乐乐应助SCU夏天采纳,获得10
8秒前
丘比特应助捏个小雪团采纳,获得10
17秒前
Epiphany完成签到,获得积分10
19秒前
浩浩完成签到 ,获得积分10
21秒前
24秒前
27秒前
SCU夏天完成签到,获得积分10
27秒前
cbt512133完成签到,获得积分20
30秒前
32秒前
34秒前
35秒前
SCU夏天发布了新的文献求助10
38秒前
小付发布了新的文献求助10
40秒前
Seldomyg完成签到 ,获得积分10
41秒前
大个应助小付采纳,获得10
49秒前
54秒前
褚青筠发布了新的文献求助10
58秒前
星辰大海应助褚青筠采纳,获得10
1分钟前
1分钟前
左丘如萱完成签到,获得积分10
1分钟前
ling2001发布了新的文献求助10
1分钟前
小土豆完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小付发布了新的文献求助10
1分钟前
fishcool完成签到,获得积分20
1分钟前
ling2001完成签到,获得积分10
1分钟前
oscar完成签到,获得积分10
1分钟前
俞慕儿完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助小付采纳,获得10
1分钟前
fishcool发布了新的文献求助10
1分钟前
科目三应助瘦瘦乌龟采纳,获得20
1分钟前
1分钟前
AnnDNz发布了新的文献求助30
1分钟前
2分钟前
siuu发布了新的文献求助10
2分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
O-carboxymethyl chitosan in biomedicine: A review 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330358
求助须知:如何正确求助?哪些是违规求助? 2959988
关于积分的说明 8597988
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444464
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727