Sonar digital twin layer via multi-attention networks with feature transfer

声纳 计算机科学 特征(语言学) 图层(电子) 模式识别(心理学) 人工智能 遥感 地质学 材料科学 哲学 语言学 复合材料
作者
Dawid Połap,Antoni Jaszcz
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10 被引量:3
标识
DOI:10.1109/tgrs.2024.3408411
摘要

Analysis of the seabed using sonar is a key technology enabling the assessment of the substrate, detection and classification of objects located there. However, quite often sonar data is processed by users due to the small amount of measurement data. This is due to the need to create large data sets, and creating a sonar image is often dependent on atmospheric conditions. In this paper, we present a solution based on digital twins that allows the implementation of a digital twin layer for sonar applications. A digital twin layer based on generative and classification network models increases the amount of data and improves the effectiveness of solutions. For this purpose, we propose multi-attention models that focus on local and global sonar features and enable their fusion. Moreover, a technique for exchanging weights between networks in such a solution was modeled to reduce the amount of computing power. The proposed approach allows for analyzing images by focusing on different features and increasing the automatization of processing its data. To verify the operation, various sonar data were used and high classification accuracy was achieved as well as the generation of new data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQ完成签到,获得积分10
1秒前
1秒前
sowhat完成签到 ,获得积分10
2秒前
luoman5656完成签到,获得积分10
6秒前
AMENG完成签到,获得积分10
6秒前
Peng0514完成签到,获得积分10
7秒前
7秒前
10秒前
沧笙踏歌应助carbon采纳,获得10
11秒前
zhengly23发布了新的文献求助10
11秒前
马某发布了新的文献求助10
12秒前
丰富的小甜瓜完成签到,获得积分10
12秒前
李琛完成签到,获得积分10
13秒前
MM完成签到,获得积分10
13秒前
木木三发布了新的文献求助10
14秒前
科研通AI2S应助Yolo采纳,获得10
14秒前
鸡块面发布了新的文献求助10
15秒前
hahahaweiwei完成签到,获得积分10
17秒前
温暖的问寒完成签到,获得积分10
18秒前
bsect发布了新的文献求助10
18秒前
18秒前
qifeng完成签到,获得积分10
19秒前
小王完成签到,获得积分10
19秒前
橙汁完成签到,获得积分10
19秒前
fafafasci完成签到,获得积分10
20秒前
诚心的忆曼完成签到 ,获得积分10
20秒前
哈基醚完成签到,获得积分10
20秒前
Lucas应助Peng0514采纳,获得30
20秒前
21秒前
Preseverance完成签到,获得积分10
22秒前
NexusExplorer应助sml采纳,获得10
23秒前
霸气的元彤完成签到 ,获得积分10
23秒前
Yolo完成签到,获得积分10
24秒前
25秒前
Ekko完成签到,获得积分10
25秒前
PATTOM完成签到,获得积分10
26秒前
巧稚一生完成签到 ,获得积分10
26秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268