Sonar Digital Twin Layer via Multiattention Networks With Feature Transfer

声纳 计算机科学 特征(语言学) 图层(电子) 模式识别(心理学) 人工智能 遥感 地质学 材料科学 哲学 语言学 复合材料
作者
Dawid Połap,Antoni Jaszcz
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10 被引量:23
标识
DOI:10.1109/tgrs.2024.3408411
摘要

Analysis of the seabed using sonar is a key technology enabling the assessment of the substrate, detection and classification of objects located there. However, quite often sonar data is processed by users due to the small amount of measurement data. This is due to the need to create large data sets, and creating a sonar image is often dependent on atmospheric conditions. In this paper, we present a solution based on digital twins that allows the implementation of a digital twin layer for sonar applications. A digital twin layer based on generative and classification network models increases the amount of data and improves the effectiveness of solutions. For this purpose, we propose multi-attention models that focus on local and global sonar features and enable their fusion. Moreover, a technique for exchanging weights between networks in such a solution was modeled to reduce the amount of computing power. The proposed approach allows for analyzing images by focusing on different features and increasing the automatization of processing its data. To verify the operation, various sonar data were used and high classification accuracy was achieved as well as the generation of new data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
小马甲应助温暖采纳,获得10
1秒前
善学以致用应助123采纳,获得10
1秒前
hanfo发布了新的文献求助10
2秒前
2秒前
2秒前
ding应助哈雷彗星采纳,获得10
2秒前
慕青应助Riggle G采纳,获得10
2秒前
FashionBoy应助缓慢钢笔采纳,获得10
3秒前
凌灵翎完成签到,获得积分10
3秒前
无极微光应助健康的宛菡采纳,获得20
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
游戏那我可徐完成签到 ,获得积分10
5秒前
呆呆完成签到 ,获得积分10
6秒前
7秒前
7秒前
强健的缘郡完成签到,获得积分20
7秒前
Leone发布了新的文献求助10
7秒前
852应助等待书雪采纳,获得10
8秒前
ENH发布了新的文献求助10
8秒前
在水一方应助Riggle G采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
烟花应助Unfair采纳,获得10
9秒前
9秒前
10秒前
10秒前
香蕉觅云应助凌灵翎采纳,获得10
10秒前
11秒前
11秒前
思源应助xiaoyu采纳,获得10
11秒前
HHF发布了新的文献求助30
11秒前
xiaobai完成签到,获得积分10
11秒前
12秒前
天天快乐关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779