Sonar digital twin layer via multi-attention networks with feature transfer

声纳 计算机科学 特征(语言学) 图层(电子) 模式识别(心理学) 人工智能 遥感 地质学 材料科学 哲学 语言学 复合材料
作者
Dawid Połap,Antoni Jaszcz
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10 被引量:3
标识
DOI:10.1109/tgrs.2024.3408411
摘要

Analysis of the seabed using sonar is a key technology enabling the assessment of the substrate, detection and classification of objects located there. However, quite often sonar data is processed by users due to the small amount of measurement data. This is due to the need to create large data sets, and creating a sonar image is often dependent on atmospheric conditions. In this paper, we present a solution based on digital twins that allows the implementation of a digital twin layer for sonar applications. A digital twin layer based on generative and classification network models increases the amount of data and improves the effectiveness of solutions. For this purpose, we propose multi-attention models that focus on local and global sonar features and enable their fusion. Moreover, a technique for exchanging weights between networks in such a solution was modeled to reduce the amount of computing power. The proposed approach allows for analyzing images by focusing on different features and increasing the automatization of processing its data. To verify the operation, various sonar data were used and high classification accuracy was achieved as well as the generation of new data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pppppmg完成签到,获得积分20
刚刚
2秒前
2秒前
3秒前
孟子发布了新的文献求助10
3秒前
上神发布了新的文献求助10
5秒前
居不易应助妮妮采纳,获得10
5秒前
6秒前
Lin关闭了Lin文献求助
6秒前
刘茂甫发布了新的文献求助10
7秒前
7秒前
9秒前
万海发布了新的文献求助10
9秒前
didilvlv完成签到,获得积分10
10秒前
morii发布了新的文献求助10
10秒前
啦啦啦123发布了新的文献求助10
12秒前
12秒前
DQ发布了新的文献求助10
13秒前
13秒前
li关闭了li文献求助
13秒前
14秒前
15秒前
16秒前
liumangtu完成签到,获得积分10
17秒前
大模型应助李如意采纳,获得10
17秒前
spark发布了新的文献求助10
17秒前
18秒前
2028847955发布了新的文献求助10
19秒前
我是老大应助冷酷云朵采纳,获得10
19秒前
xiaosu发布了新的文献求助30
19秒前
20秒前
ddd发布了新的文献求助10
23秒前
23秒前
李健应助玉玉采纳,获得10
23秒前
Orange应助sansan采纳,获得10
24秒前
寻度完成签到,获得积分10
24秒前
柚子想吃橘子完成签到,获得积分10
24秒前
彭于晏应助小聂采纳,获得10
25秒前
大模型应助LO7pM2采纳,获得30
25秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153624
求助须知:如何正确求助?哪些是违规求助? 2804799
关于积分的说明 7861757
捐赠科研通 2462835
什么是DOI,文献DOI怎么找? 1311002
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601821