亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sonar digital twin layer via multi-attention networks with feature transfer

声纳 计算机科学 特征(语言学) 图层(电子) 模式识别(心理学) 人工智能 遥感 地质学 材料科学 哲学 语言学 复合材料
作者
Dawid Połap,Antoni Jaszcz
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10 被引量:3
标识
DOI:10.1109/tgrs.2024.3408411
摘要

Analysis of the seabed using sonar is a key technology enabling the assessment of the substrate, detection and classification of objects located there. However, quite often sonar data is processed by users due to the small amount of measurement data. This is due to the need to create large data sets, and creating a sonar image is often dependent on atmospheric conditions. In this paper, we present a solution based on digital twins that allows the implementation of a digital twin layer for sonar applications. A digital twin layer based on generative and classification network models increases the amount of data and improves the effectiveness of solutions. For this purpose, we propose multi-attention models that focus on local and global sonar features and enable their fusion. Moreover, a technique for exchanging weights between networks in such a solution was modeled to reduce the amount of computing power. The proposed approach allows for analyzing images by focusing on different features and increasing the automatization of processing its data. To verify the operation, various sonar data were used and high classification accuracy was achieved as well as the generation of new data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
26秒前
DannyNickolov发布了新的文献求助10
29秒前
30秒前
曲夜白完成签到 ,获得积分10
31秒前
Owen应助荆棘鸟采纳,获得10
32秒前
量子星尘发布了新的文献求助10
38秒前
DannyNickolov完成签到,获得积分10
38秒前
mervin完成签到,获得积分10
54秒前
57秒前
Hodlumm发布了新的文献求助10
58秒前
1分钟前
隐形曼青应助谷千千采纳,获得10
1分钟前
1分钟前
2分钟前
谷千千发布了新的文献求助10
2分钟前
谷千千完成签到,获得积分10
2分钟前
2分钟前
jyy发布了新的文献求助10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
3分钟前
文艺易蓉发布了新的文献求助10
3分钟前
小蘑菇应助文艺易蓉采纳,获得10
3分钟前
调皮醉波完成签到 ,获得积分10
3分钟前
3分钟前
XiaoLiu完成签到,获得积分10
4分钟前
4分钟前
Dreamer.发布了新的文献求助10
4分钟前
充电宝应助Xinying采纳,获得10
4分钟前
4分钟前
Hvginn完成签到,获得积分10
5分钟前
5分钟前
sc发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Shuo应助科研通管家采纳,获得20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750