Understanding the Disparities of PM2.5 Air Pollution in Urban Areas via Deep Support Vector Regression

溢出效应 空气质量指数 持续性 公制(单位) 计算机科学 网格 空气污染 图形 支持向量机 节点(物理) 计量经济学 环境科学 机器学习 地理 数学 业务 工程类 理论计算机科学 气象学 经济 生态学 生物 化学 大地测量学 有机化学 营销 结构工程 微观经济学
作者
Yuling Xia,Teague McCracken,Tong Liu,Pei Chen,A. R. Metcalf,Chao Fan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (19): 8404-8416 被引量:1
标识
DOI:10.1021/acs.est.3c09177
摘要

In densely populated urban areas, PM2.5 has a direct impact on the health and quality of residents' life. Thus, understanding the disparities of PM2.5 is crucial for ensuring urban sustainability and public health. Traditional prediction models often overlook the spillover effects within urban areas and the complexity of the data, leading to inaccurate spatial predictions of PM2.5. We propose Deep Support Vector Regression (DSVR) that models the urban areas as a graph, with grid center points as the nodes and the connections between grids as the edges. Nature and human activity features of each grid are initialized as the representation of each node. Based on the graph, DSVR uses random diffusion-based deep learning to quantify the spillover effects of PM2.5. It leverages random walk to uncover more extensive spillover relationships between nodes, thereby capturing both the local and nonlocal spillover effects of PM2.5. And then it engages in predictive learning using the feature vectors that encapsulate spillover effects, enhancing the understanding of PM2.5 disparities and connections across different regions. By applying our proposed model in the northern region of New York for predictive performance analysis, we found that DSVR consistently outperforms other models. During periods of PM2.5 surges, the R-square of DSVR reaches as high as 0.729, outperforming non-spillover models by 2.5 to 5.7 times and traditional spatial metric models by 2.2 to 4.6 times. Therefore, our proposed model holds significant importance for understanding disparities of PM2.5 air pollution in urban areas, taking the first steps toward a new method that considers both the spillover effects and nonlinear feature of data for prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
refrain完成签到,获得积分10
2秒前
喻语儿发布了新的文献求助10
4秒前
kiddos3e完成签到,获得积分10
4秒前
噗噜噜发布了新的文献求助30
5秒前
5秒前
hlx发布了新的文献求助10
5秒前
lewis17完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
领导范儿应助Kam采纳,获得10
14秒前
郑小发布了新的文献求助30
17秒前
18秒前
和谐的柠檬完成签到,获得积分10
18秒前
123完成签到 ,获得积分10
20秒前
饱满冷卉完成签到,获得积分10
22秒前
23秒前
23秒前
猪猪想要平静的生活完成签到,获得积分10
23秒前
斯文败类应助噗噜噜采纳,获得30
23秒前
CAOHOU举报贝尔求助涉嫌违规
26秒前
zqlxueli完成签到 ,获得积分10
26秒前
orixero应助jrzsy采纳,获得10
28秒前
Hello应助水蜜桃幽灵采纳,获得10
29秒前
XiaoMing完成签到,获得积分10
29秒前
陈展峰发布了新的文献求助10
29秒前
延胡索完成签到,获得积分10
30秒前
SYLH应助sresr采纳,获得10
31秒前
叶子完成签到,获得积分10
34秒前
windmill完成签到,获得积分10
35秒前
36秒前
38秒前
123发布了新的文献求助20
38秒前
大模型应助五山第一院士采纳,获得10
39秒前
zcm1999完成签到,获得积分10
40秒前
之道完成签到,获得积分10
40秒前
yyfsummer完成签到,获得积分10
42秒前
ei123完成签到,获得积分10
42秒前
共享精神应助flymove采纳,获得10
44秒前
酷炫鑫发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844