医学
无线电技术
淋巴细胞白血病
鉴定(生物学)
白血病
人工智能
深度学习
计算生物学
病理
肿瘤科
内科学
放射科
植物
生物
计算机科学
作者
Qing Cai,Hong Tang,Weifeng Wei,H. Zhang,Ke Jin,Tao Yi
标识
DOI:10.1016/j.crad.2024.04.017
摘要
Objective This study aimed to develop highly precise radiomics and deep learning models to accurately detect acute lymphoblastic leukemia (ALL) using a T1WI image. Methods A total of 604 brain magnetic resonance data of ALL group and normal children (NC) group. Two radiologists independently retrieved radiomics features after manually delineating the area of interest along the clivus at the median sagittal position of T1WI. According to the 9:1 ratio, all samples were randomly divided into the training cohort and the testing cohort. the support vector machine was then used to classify the radiomics model using the features that had a correlation coefficient of greater than 0.99 in the training cohort.the Efficientnet-B3 network model received the training set images to create a deep learning model. The sensitivity, specificity, and area under the ROC curve were calculated in order to evaluate the diagnostic efficacy of the different models after the validation of two aforementioned models in the testing cohort. Results The deep learning model had a higher AUC value of 0.981 than the radiomics model's value of 0.962 in the testing cohort. Delong's test showed no statistical difference between the two models (P>0.05).The accuracy/sensitivity/specificity/negative predictive value/positive predictive value achieved 0.9180/0.9565/0.8947/0.9714/0.8462 for the radiomics model and 0.9344/0.8696/0.9737/0.9250/0.9524 for deep learning model. Conclusion The deep learning and radiomics models showed high AUC values in the training and test cohorts. They also exhibited good diagnostic efficacy for predicting ALL.
科研通智能强力驱动
Strongly Powered by AbleSci AI