Radiomics Model and Deep Learning Model Based on T1WI Image for Acute Lymphoblastic Leukemia Identification

医学 无线电技术 淋巴细胞白血病 鉴定(生物学) 白血病 人工智能 深度学习 计算生物学 病理 肿瘤科 内科学 放射科 植物 生物 计算机科学
作者
Qing Cai,Hong Tang,Weifeng Wei,H. Zhang,Ke Jin,Tao Yi
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (8): e1064-e1071
标识
DOI:10.1016/j.crad.2024.04.017
摘要

Objective This study aimed to develop highly precise radiomics and deep learning models to accurately detect acute lymphoblastic leukemia (ALL) using a T1WI image. Methods A total of 604 brain magnetic resonance data of ALL group and normal children (NC) group. Two radiologists independently retrieved radiomics features after manually delineating the area of interest along the clivus at the median sagittal position of T1WI. According to the 9:1 ratio, all samples were randomly divided into the training cohort and the testing cohort. the support vector machine was then used to classify the radiomics model using the features that had a correlation coefficient of greater than 0.99 in the training cohort.the Efficientnet-B3 network model received the training set images to create a deep learning model. The sensitivity, specificity, and area under the ROC curve were calculated in order to evaluate the diagnostic efficacy of the different models after the validation of two aforementioned models in the testing cohort. Results The deep learning model had a higher AUC value of 0.981 than the radiomics model's value of 0.962 in the testing cohort. Delong's test showed no statistical difference between the two models (P>0.05).The accuracy/sensitivity/specificity/negative predictive value/positive predictive value achieved 0.9180/0.9565/0.8947/0.9714/0.8462 for the radiomics model and 0.9344/0.8696/0.9737/0.9250/0.9524 for deep learning model. Conclusion The deep learning and radiomics models showed high AUC values in the training and test cohorts. They also exhibited good diagnostic efficacy for predicting ALL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉南风完成签到,获得积分10
2秒前
子非我完成签到,获得积分10
2秒前
可乐发布了新的文献求助10
2秒前
年轻枕头完成签到,获得积分10
2秒前
清新的洋葱完成签到,获得积分10
3秒前
oleskarabach完成签到,获得积分20
3秒前
monkey1976完成签到,获得积分10
3秒前
杨白秋完成签到,获得积分0
4秒前
下雨天完成签到,获得积分10
4秒前
霡霂完成签到,获得积分10
5秒前
Hello应助cwm采纳,获得10
6秒前
巧巧艾完成签到,获得积分10
6秒前
7秒前
waynechang完成签到,获得积分10
7秒前
柔弱的兔子完成签到,获得积分10
8秒前
方大完成签到,获得积分10
8秒前
123456完成签到,获得积分10
9秒前
9秒前
10秒前
不必要再讨论适合与否完成签到,获得积分0
10秒前
guo完成签到,获得积分10
10秒前
王ccccc完成签到,获得积分10
11秒前
xshzhou完成签到,获得积分10
11秒前
嵇南露完成签到,获得积分10
12秒前
zip完成签到,获得积分10
12秒前
聪慧的凝海完成签到 ,获得积分10
13秒前
Laputa完成签到,获得积分10
13秒前
14秒前
南巷完成签到,获得积分10
14秒前
开心蛋挞发布了新的文献求助10
14秒前
文献求助完成签到,获得积分10
15秒前
庞威完成签到 ,获得积分10
16秒前
laii完成签到,获得积分10
16秒前
66完成签到 ,获得积分10
17秒前
huangsi完成签到,获得积分10
17秒前
17秒前
冬月完成签到,获得积分10
17秒前
CL完成签到,获得积分10
18秒前
石敢当完成签到,获得积分10
18秒前
鸣笛应助科研通管家采纳,获得20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855