Radiomics Model and Deep Learning Model Based on T1WI Image for Acute Lymphoblastic Leukemia Identification

医学 无线电技术 淋巴细胞白血病 鉴定(生物学) 白血病 人工智能 深度学习 计算生物学 病理 肿瘤科 内科学 放射科 植物 生物 计算机科学
作者
Qing Cai,Hong Tang,Weifeng Wei,H. Zhang,Ke Jin,Tao Yi
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (8): e1064-e1071
标识
DOI:10.1016/j.crad.2024.04.017
摘要

Objective This study aimed to develop highly precise radiomics and deep learning models to accurately detect acute lymphoblastic leukemia (ALL) using a T1WI image. Methods A total of 604 brain magnetic resonance data of ALL group and normal children (NC) group. Two radiologists independently retrieved radiomics features after manually delineating the area of interest along the clivus at the median sagittal position of T1WI. According to the 9:1 ratio, all samples were randomly divided into the training cohort and the testing cohort. the support vector machine was then used to classify the radiomics model using the features that had a correlation coefficient of greater than 0.99 in the training cohort.the Efficientnet-B3 network model received the training set images to create a deep learning model. The sensitivity, specificity, and area under the ROC curve were calculated in order to evaluate the diagnostic efficacy of the different models after the validation of two aforementioned models in the testing cohort. Results The deep learning model had a higher AUC value of 0.981 than the radiomics model's value of 0.962 in the testing cohort. Delong's test showed no statistical difference between the two models (P>0.05).The accuracy/sensitivity/specificity/negative predictive value/positive predictive value achieved 0.9180/0.9565/0.8947/0.9714/0.8462 for the radiomics model and 0.9344/0.8696/0.9737/0.9250/0.9524 for deep learning model. Conclusion The deep learning and radiomics models showed high AUC values in the training and test cohorts. They also exhibited good diagnostic efficacy for predicting ALL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈军应助Frog采纳,获得40
1秒前
1秒前
2秒前
2秒前
李健应助无私的汉堡采纳,获得10
2秒前
烤地瓜完成签到 ,获得积分10
2秒前
李爱国应助咚咚采纳,获得10
3秒前
4秒前
6秒前
李子园完成签到,获得积分20
6秒前
Owen应助小糯米采纳,获得10
7秒前
7秒前
科研通AI2S应助z549326399采纳,获得10
8秒前
脑洞疼应助kb采纳,获得10
8秒前
9秒前
ding应助奶茶采纳,获得10
9秒前
小怪物发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
1476194342发布了新的文献求助30
11秒前
12秒前
快乐完成签到,获得积分10
14秒前
Muran完成签到,获得积分10
15秒前
英俊的铭应助李多多采纳,获得10
15秒前
十一发布了新的文献求助10
16秒前
美满亦寒发布了新的文献求助10
18秒前
强健的雅绿完成签到,获得积分10
18秒前
NexusExplorer应助Muran采纳,获得10
18秒前
研友_VZG7GZ应助柴胡采纳,获得10
18秒前
19秒前
善学以致用应助shmily采纳,获得10
19秒前
小马甲应助朴实的天佑采纳,获得10
21秒前
22秒前
22秒前
23秒前
TiY发布了新的文献求助10
24秒前
baiximo完成签到,获得积分10
25秒前
杳鸢应助呆呆的猕猴桃采纳,获得10
26秒前
奶茶发布了新的文献求助10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228989
求助须知:如何正确求助?哪些是违规求助? 2876727
关于积分的说明 8196386
捐赠科研通 2544156
什么是DOI,文献DOI怎么找? 1374167
科研通“疑难数据库(出版商)”最低求助积分说明 646890
邀请新用户注册赠送积分活动 621582