DSMT: Dual-Stage Multiscale Transformer for Hyperspectral Snapshot Compressive Imaging

高光谱成像 快照(计算机存储) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 操作系统
作者
Fulin Luo,Xi Chen,Tan Guo,Xiuwen Gong,Lefei Zhang,Ce Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3556520
摘要

Snapshot compressive imaging (SCI) compresses a 3D hyperspectral image (HSI) into a 2D measurement, significantly improving imaging efficiency while preserving the spatial and spectral information inherent in HSI. However, reconstructing high-quality HSIs from compressed measurements remains a core challenge due to the complexity of the inverse problem. Transformer-based methods have recently shown promising performance in HSI reconstruction. Nonetheless, effectively capturing local information, long-range dependencies, and multi-scale features within a reasonable computational cost remains a significant challenge. In this paper, we propose a dual-stage multiscale Transformer (DSMT) tailored for HSI reconstruction, which adopts a coarse-to-fine framework to enhance reconstruction accuracy and network generalization. Specifically, we design a novel U-Net architecture with a dual-branch encoder, where two separate branches process distinct features and are fused to achieve more refined reconstruction results. Full-scale skip connections are introduced to strengthen feature fusion across different stages. To further improve performance, we develop a novel self-attention mechanism called dual-window multiscale multi-head self-attention (DWM-MSA). By utilizing two differently sized windows, DWM-MSA captures long-range dependencies and local information at multiple scales, significantly boosting reconstruction quality. Additionally, we introduce a new positional embedding method, con-rel positional embedding (CRPE), which dynamically models both spatial and spectral dependencies, effectively enhancing the Transformer's capacity for HSI reconstruction. Extensive quantitative and qualitative experiments on both the simulated and the real data are conducted to demonstrate the superior performance, stability, and generalization ability of our DSMT. Code of this project is at https://github.com/chenx2000/DSMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
京阿尼完成签到,获得积分10
3秒前
3秒前
ZWGS发布了新的文献求助10
4秒前
DJDJ完成签到,获得积分10
5秒前
京阿尼发布了新的文献求助10
6秒前
ponymjj完成签到,获得积分10
6秒前
wanci应助cq采纳,获得10
7秒前
7秒前
7秒前
7秒前
小宇完成签到,获得积分10
8秒前
飘零枫叶完成签到,获得积分10
9秒前
白白白完成签到,获得积分10
9秒前
Wy发布了新的文献求助10
10秒前
10秒前
科研通AI5应助英俊珩采纳,获得10
10秒前
幼稚园老大完成签到,获得积分10
10秒前
Erich完成签到 ,获得积分10
10秒前
獭獭完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
今后应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得20
11秒前
流露完成签到,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
zyfqpc应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
科研通AI5应助AAA采纳,获得10
11秒前
小小苏荷发布了新的文献求助10
12秒前
wangxiaohui给wangxiaohui的求助进行了留言
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774229
求助须知:如何正确求助?哪些是违规求助? 3319961
关于积分的说明 10197633
捐赠科研通 3034461
什么是DOI,文献DOI怎么找? 1665041
邀请新用户注册赠送积分活动 796603
科研通“疑难数据库(出版商)”最低求助积分说明 757510