亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compound fault feature separation with frequency segmentation and improved sparse filtering for rolling bearings

分割 模式识别(心理学) 特征(语言学) 人工智能 断层(地质) 分离(统计) 计算机科学 地质学 机器学习 地震学 语言学 哲学
作者
Siqi Gong,Shunming Li,Min Xia
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251320676
摘要

Due to variable and complex working conditions, rolling bearings are susceptible to compound faults. However, because a single fault plays a leading role, the weaker fault in the compound fault is difficult to monitor. If the weak fault in the compound fault can be found and identified, it is conducive to a more accurate judgment of the health state of the bearing. Several approaches have been proposed to detect compound bearing faults, but most of them are complex, inefficient and may require prior knowledge about fault characteristics such as fault period. In this article, the improved approach based on sparse filtering is proposed to detect the compound faults in rolling bearings. The proposed approach utilizes the wavelet decomposition method to divide the original vibration signal with compound faults into several segments in the frequency domain. All segmentations are employed to construct the Hankel matrix. Improved sparse filtering (ISF) is then employed to enhance the fault features by attenuating the noise. ISF performs autocorrelation on input samples (column of Hankel matrix) to improve the expressiveness of features. The penalty term is used to improve the performance of the sparse characteristic expressions of the weight matrix. The envelope spectral analysis is then finally used to detect the compound faults. The ability of sparse filtering to separate the multi-fault signal into different components is discussed in the simulation. Both simulation and experimental data with compound faults verify the effectiveness of the developed approach. The ability to distinguish different fault modes without prior knowledge of fault periods makes the proposed method advanced and suitable for compound fault diagnosis in rolling bearings. Compared with the existing methods, results show superior feature extraction performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得150
8秒前
烟花应助科研通管家采纳,获得10
8秒前
yys10l完成签到,获得积分10
11秒前
yys完成签到,获得积分10
24秒前
43秒前
白云发布了新的文献求助10
47秒前
51秒前
Nicole发布了新的文献求助10
55秒前
悦耳冬萱完成签到 ,获得积分10
1分钟前
彩虹儿应助af采纳,获得10
1分钟前
HRB完成签到 ,获得积分10
1分钟前
Adi完成签到,获得积分10
2分钟前
3分钟前
af完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
所所应助weinaonao采纳,获得10
4分钟前
zsmj23完成签到 ,获得积分0
5分钟前
海风奕婕完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
6分钟前
weinaonao发布了新的文献求助10
6分钟前
6分钟前
11完成签到,获得积分10
6分钟前
11发布了新的文献求助10
6分钟前
充电宝应助weinaonao采纳,获得10
7分钟前
7分钟前
孙国扬发布了新的文献求助10
7分钟前
11完成签到 ,获得积分10
7分钟前
hugeyoung完成签到,获得积分10
8分钟前
8分钟前
李健应助yukky采纳,获得30
8分钟前
白云完成签到,获得积分10
9分钟前
白云发布了新的文献求助10
9分钟前
9分钟前
yukky发布了新的文献求助30
9分钟前
9分钟前
weinaonao发布了新的文献求助10
9分钟前
weinaonao完成签到,获得积分10
10分钟前
慕青应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926702
求助须知:如何正确求助?哪些是违规求助? 4196320
关于积分的说明 13032388
捐赠科研通 3968553
什么是DOI,文献DOI怎么找? 2175046
邀请新用户注册赠送积分活动 1192206
关于科研通互助平台的介绍 1102505