Compound fault feature separation with frequency segmentation and improved sparse filtering for rolling bearings

分割 模式识别(心理学) 特征(语言学) 人工智能 断层(地质) 分离(统计) 计算机科学 地质学 机器学习 地震学 语言学 哲学
作者
Siqi Gong,Shunming Li,Min Xia
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251320676
摘要

Due to variable and complex working conditions, rolling bearings are susceptible to compound faults. However, because a single fault plays a leading role, the weaker fault in the compound fault is difficult to monitor. If the weak fault in the compound fault can be found and identified, it is conducive to a more accurate judgment of the health state of the bearing. Several approaches have been proposed to detect compound bearing faults, but most of them are complex, inefficient and may require prior knowledge about fault characteristics such as fault period. In this article, the improved approach based on sparse filtering is proposed to detect the compound faults in rolling bearings. The proposed approach utilizes the wavelet decomposition method to divide the original vibration signal with compound faults into several segments in the frequency domain. All segmentations are employed to construct the Hankel matrix. Improved sparse filtering (ISF) is then employed to enhance the fault features by attenuating the noise. ISF performs autocorrelation on input samples (column of Hankel matrix) to improve the expressiveness of features. The penalty term is used to improve the performance of the sparse characteristic expressions of the weight matrix. The envelope spectral analysis is then finally used to detect the compound faults. The ability of sparse filtering to separate the multi-fault signal into different components is discussed in the simulation. Both simulation and experimental data with compound faults verify the effectiveness of the developed approach. The ability to distinguish different fault modes without prior knowledge of fault periods makes the proposed method advanced and suitable for compound fault diagnosis in rolling bearings. Compared with the existing methods, results show superior feature extraction performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助zp采纳,获得10
1秒前
xinyuli完成签到,获得积分10
1秒前
1秒前
1秒前
等风归丶发布了新的文献求助10
2秒前
2秒前
明朗完成签到 ,获得积分10
2秒前
2秒前
3秒前
5秒前
5秒前
5秒前
5秒前
5秒前
CodeCraft应助阳炎采纳,获得10
5秒前
6秒前
Lucas应助河马采纳,获得10
6秒前
caq发布了新的文献求助30
6秒前
oh发布了新的文献求助10
6秒前
QI发布了新的文献求助10
7秒前
JamesPei应助dick_zhang采纳,获得10
7秒前
王志鹏发布了新的文献求助10
8秒前
lxl发布了新的文献求助10
8秒前
lalala应助秋林采纳,获得10
8秒前
科研通AI5应助缥缈的涵菡采纳,获得10
8秒前
江思瑜完成签到,获得积分20
9秒前
笙璃发布了新的文献求助10
9秒前
9秒前
枷锁发布了新的文献求助10
9秒前
天马行空发布了新的文献求助10
9秒前
言余发布了新的文献求助100
9秒前
10秒前
王安石发布了新的文献求助10
10秒前
10秒前
Ade发布了新的文献求助10
10秒前
太叔笑蓝发布了新的文献求助30
11秒前
小蘑菇应助oldfe采纳,获得10
11秒前
Orange应助yatou5651采纳,获得10
11秒前
哈哈给哈哈的求助进行了留言
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514287
求助须知:如何正确求助?哪些是违规求助? 3096594
关于积分的说明 9232412
捐赠科研通 2791737
什么是DOI,文献DOI怎么找? 1532012
邀请新用户注册赠送积分活动 711733
科研通“疑难数据库(出版商)”最低求助积分说明 707012