Compound fault feature separation with frequency segmentation and improved sparse filtering for rolling bearings

分割 模式识别(心理学) 特征(语言学) 人工智能 断层(地质) 分离(统计) 计算机科学 地质学 机器学习 地震学 语言学 哲学
作者
Siqi Gong,Shunming Li,Min Xia
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251320676
摘要

Due to variable and complex working conditions, rolling bearings are susceptible to compound faults. However, because a single fault plays a leading role, the weaker fault in the compound fault is difficult to monitor. If the weak fault in the compound fault can be found and identified, it is conducive to a more accurate judgment of the health state of the bearing. Several approaches have been proposed to detect compound bearing faults, but most of them are complex, inefficient and may require prior knowledge about fault characteristics such as fault period. In this article, the improved approach based on sparse filtering is proposed to detect the compound faults in rolling bearings. The proposed approach utilizes the wavelet decomposition method to divide the original vibration signal with compound faults into several segments in the frequency domain. All segmentations are employed to construct the Hankel matrix. Improved sparse filtering (ISF) is then employed to enhance the fault features by attenuating the noise. ISF performs autocorrelation on input samples (column of Hankel matrix) to improve the expressiveness of features. The penalty term is used to improve the performance of the sparse characteristic expressions of the weight matrix. The envelope spectral analysis is then finally used to detect the compound faults. The ability of sparse filtering to separate the multi-fault signal into different components is discussed in the simulation. Both simulation and experimental data with compound faults verify the effectiveness of the developed approach. The ability to distinguish different fault modes without prior knowledge of fault periods makes the proposed method advanced and suitable for compound fault diagnosis in rolling bearings. Compared with the existing methods, results show superior feature extraction performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbutsj完成签到,获得积分10
1秒前
KK完成签到,获得积分10
3秒前
careyzhou发布了新的文献求助10
4秒前
中原第一深情完成签到,获得积分10
4秒前
小洪俊熙发布了新的文献求助10
5秒前
北望完成签到,获得积分20
5秒前
Lee完成签到 ,获得积分10
6秒前
科研狗完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
romeo发布了新的文献求助10
12秒前
妖孽宇完成签到,获得积分10
14秒前
简简单单完成签到,获得积分10
14秒前
550190946发布了新的文献求助10
14秒前
16秒前
111完成签到,获得积分10
16秒前
zhubin完成签到 ,获得积分10
16秒前
18秒前
田南松发布了新的文献求助10
21秒前
搬砖美少女完成签到,获得积分10
21秒前
nn发布了新的文献求助10
22秒前
7ohnny完成签到,获得积分10
23秒前
apckkk完成签到 ,获得积分10
25秒前
深情安青应助550190946采纳,获得10
26秒前
27秒前
28秒前
jbq完成签到 ,获得积分20
28秒前
YM完成签到,获得积分10
30秒前
生动柔发布了新的文献求助10
30秒前
大旭完成签到 ,获得积分10
31秒前
Fn完成签到 ,获得积分10
33秒前
zero完成签到,获得积分10
35秒前
瘦瘦谷兰完成签到,获得积分10
35秒前
zcz完成签到 ,获得积分10
36秒前
白嘉乐完成签到,获得积分10
37秒前
考研小白完成签到,获得积分10
37秒前
高妍纯完成签到 ,获得积分10
39秒前
41秒前
风中的丝袜完成签到,获得积分10
41秒前
赵赵完成签到,获得积分10
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022