SDFIE-NET – A self-learning dual-feature fusion information capture expression method for birdsong recognition

对偶(语法数字) 特征(语言学) 网(多面体) 人工智能 计算机科学 模式识别(心理学) 表达式(计算机科学) 语音识别 数学 艺术 语言学 哲学 几何学 文学类 程序设计语言
作者
Qin Zhang,Shipeng Hu,Lu Tang,Rui Deng,Choujun Yang,Guoxiong Zhou,Aibin Chen
出处
期刊:Applied Acoustics [Elsevier]
卷期号:221: 110004-110004 被引量:1
标识
DOI:10.1016/j.apacoust.2024.110004
摘要

Bird recognition is important for the monitoring of bird populations and the protection of ecosystems. Identifying birds through image forms can be difficult due to the complexity of natural environments. Song-based bird recognition allows for bird identification with only a small amount of background noise introduced, however, efficiently recognizing bird songs remains a challenging task. Based on this problem, this paper proposed a self-learning dual-feature fusion information capture expression method (SDFIE-NET) for recognizing birdsong. Firstly, using the Mel filter excerpt the low-frequency characteristics of the bird song. Since fixed-parameter filters are incapable of achieving different feature extraction effects based on different birdsong. In this paper, we incorporate a fully learnable audio classification front-end Leaf architecture for the extraction of bird song feature information, which can self-learn different extraction parameters for the birdsong. Effectively combining the high-frequency feature information and low-frequency differences acquired by the two approaches corresponds to the declared dual-feature fusion module (SCDFF), reducing information redundancy and improving characterization capability. Secondly, the backbone network utilizes SDFIE-NET, which is composed of the Fused-MBConv module and modified CA-MBConv module. The Criss-Cross Attention module is added after each layer composed of Fused-MBConv modules. This improves the speed and accuracy of effective information transfer between internal modules and increases the expressive power of the model at the pixel level. To enhance the anti-interference and generalization ability of the model, we constructed a self-made dataset (Bird_alldata) consisting of 30 kinds of birdsong. On this dataset, we performed a variety of experiments, and recognition accuracy reached 95.77 % and the F1-score reached 95.52 %. Generalization experiments were conducted on the environmental sound dataset Urbansound8K and the bird song dataset Birdsdata, and the model achieves recognition accuracies of 94.05 % and 94.10 % on the two datasets, with F1-scores of 94.21 % and 94.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐茂瑜完成签到 ,获得积分10
刚刚
刚刚
刚刚
2秒前
2秒前
活力的听露完成签到 ,获得积分10
2秒前
shanshan发布了新的文献求助10
4秒前
英姑应助Lorain采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
Mrmiss666完成签到,获得积分20
7秒前
儒雅随和完成签到,获得积分10
7秒前
阳光冷松完成签到,获得积分10
7秒前
JXingER完成签到,获得积分20
7秒前
TANG发布了新的文献求助10
9秒前
Orange应助齐静春采纳,获得10
10秒前
JXingER发布了新的文献求助30
10秒前
李心雨发布了新的文献求助10
10秒前
啊哈嗯哈哈啊完成签到,获得积分10
12秒前
Mrmiss666发布了新的文献求助10
12秒前
13秒前
14秒前
ding应助zz77877采纳,获得10
16秒前
18秒前
大翟发布了新的文献求助10
19秒前
bkagyin应助向天歌采纳,获得10
19秒前
20秒前
21秒前
jiesenya完成签到,获得积分10
22秒前
热心紫寒完成签到,获得积分10
24秒前
25秒前
orixero应助今晚吃马铃薯采纳,获得10
25秒前
25秒前
LIKUN完成签到,获得积分10
26秒前
26秒前
Echo完成签到 ,获得积分20
27秒前
28秒前
30秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464176
求助须知:如何正确求助?哪些是违规求助? 3057496
关于积分的说明 9057440
捐赠科研通 2747573
什么是DOI,文献DOI怎么找? 1507413
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696068