已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach

计算机科学 棱锥(几何) 判别式 人工智能 卷积神经网络 瓶颈 残余物 卷积(计算机科学) 架空(工程) 特征(语言学) 模式识别(心理学) 人工神经网络 算法 嵌入式系统 操作系统 光学 物理 哲学 语言学
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108261-108261 被引量:35
标识
DOI:10.1016/j.engappai.2024.108261
摘要

Attention mechanisms have gradually become necessary to enhance the representational power of convolutional neural networks (CNNs). Despite recent progress in attention mechanism research, some open problems still exist. Most existing methods ignore modeling multi-scale feature representations, structural information, and long-range channel dependencies, which are essential for delivering more discriminative attention maps. This study proposes a novel, low-overhead, high-performance attention mechanism with strong generalization ability for various networks and datasets. This mechanism is called Multi-Scale Spatial Pyramid Attention (MSPA) and can be used to solve the limitations of other attention methods. For the critical components of MSPA, we not only develop the Hierarchical-Phantom Convolution (HPC) module, which can extract multi-scale spatial information at a more granular level utilizing hierarchical residual-like connections, but also design the Spatial Pyramid Recalibration (SPR) module, which can integrate structural regularization and structural information in an adaptive combination mechanism, while employing the Softmax operation to build long-range channel dependencies. The proposed MSPA is a powerful tool that can be conveniently embedded into various CNNs as a plug-and-play component. Correspondingly, using MSPA to replace the 3 × 3 convolution in the bottleneck residual blocks of ResNets, we created a series of simple and efficient backbones named MSPANet, which naturally inherit the advantages of MSPA. Without bells and whistles, our method substantially outperforms other state-of-the-art counterparts in all evaluation metrics based on extensive experimental results from CIFAR-100 and ImageNet-1K image recognition. When applying MSPA to ResNet-50, our model achieves top-1 classification accuracy of 81.74% and 78.40% on the CIFAR-100 and ImageNet-1K benchmarks, exceeding the corresponding baselines by 3.95% and 2.27%, respectively. We also obtained promising performance improvements of 1.15% and 0.91% compared to the competitive EPSANet-50. In addition, empirical research results in autonomous driving engineering applications also demonstrate that our method can significantly improve the accuracy and real-time performance of image recognition with cheaper overhead. Our code is publicly available at https://github.com/ndsclark/MSPANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研蓝月完成签到,获得积分10
3秒前
元儿圆发布了新的文献求助10
4秒前
TingtingGZ发布了新的文献求助10
4秒前
MRZ完成签到,获得积分10
5秒前
7秒前
Ache_Xu完成签到 ,获得积分10
8秒前
可爱的函函应助xml采纳,获得10
10秒前
Ccc完成签到,获得积分20
11秒前
科研宝发布了新的文献求助10
12秒前
顾矜应助元儿圆采纳,获得10
13秒前
星辰大海应助启玄采纳,获得10
14秒前
Hello应助xiaoya927217采纳,获得10
21秒前
21秒前
xml发布了新的文献求助10
27秒前
chenhoe1212完成签到 ,获得积分10
30秒前
34秒前
37秒前
Soledad完成签到 ,获得积分10
37秒前
启玄发布了新的文献求助10
38秒前
xml完成签到,获得积分10
40秒前
42秒前
紫薯球完成签到,获得积分10
46秒前
文文完成签到 ,获得积分10
48秒前
49秒前
是多多呀完成签到 ,获得积分10
51秒前
hay发布了新的文献求助10
54秒前
Yang发布了新的文献求助10
57秒前
米龙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LYY发布了新的文献求助10
1分钟前
洁净的千凡完成签到 ,获得积分20
1分钟前
fzzzzlucy发布了新的文献求助10
1分钟前
ddddddd完成签到 ,获得积分10
1分钟前
李先生发布了新的文献求助10
1分钟前
Yang完成签到,获得积分10
1分钟前
lyp完成签到 ,获得积分10
1分钟前
一这那西完成签到,获得积分10
1分钟前
糖果完成签到 ,获得积分10
1分钟前
ZB完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524