亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach

计算机科学 棱锥(几何) 判别式 人工智能 卷积神经网络 瓶颈 残余物 卷积(计算机科学) 架空(工程) 特征(语言学) 模式识别(心理学) 人工神经网络 算法 嵌入式系统 操作系统 光学 物理 哲学 语言学
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108261-108261 被引量:35
标识
DOI:10.1016/j.engappai.2024.108261
摘要

Attention mechanisms have gradually become necessary to enhance the representational power of convolutional neural networks (CNNs). Despite recent progress in attention mechanism research, some open problems still exist. Most existing methods ignore modeling multi-scale feature representations, structural information, and long-range channel dependencies, which are essential for delivering more discriminative attention maps. This study proposes a novel, low-overhead, high-performance attention mechanism with strong generalization ability for various networks and datasets. This mechanism is called Multi-Scale Spatial Pyramid Attention (MSPA) and can be used to solve the limitations of other attention methods. For the critical components of MSPA, we not only develop the Hierarchical-Phantom Convolution (HPC) module, which can extract multi-scale spatial information at a more granular level utilizing hierarchical residual-like connections, but also design the Spatial Pyramid Recalibration (SPR) module, which can integrate structural regularization and structural information in an adaptive combination mechanism, while employing the Softmax operation to build long-range channel dependencies. The proposed MSPA is a powerful tool that can be conveniently embedded into various CNNs as a plug-and-play component. Correspondingly, using MSPA to replace the 3 × 3 convolution in the bottleneck residual blocks of ResNets, we created a series of simple and efficient backbones named MSPANet, which naturally inherit the advantages of MSPA. Without bells and whistles, our method substantially outperforms other state-of-the-art counterparts in all evaluation metrics based on extensive experimental results from CIFAR-100 and ImageNet-1K image recognition. When applying MSPA to ResNet-50, our model achieves top-1 classification accuracy of 81.74% and 78.40% on the CIFAR-100 and ImageNet-1K benchmarks, exceeding the corresponding baselines by 3.95% and 2.27%, respectively. We also obtained promising performance improvements of 1.15% and 0.91% compared to the competitive EPSANet-50. In addition, empirical research results in autonomous driving engineering applications also demonstrate that our method can significantly improve the accuracy and real-time performance of image recognition with cheaper overhead. Our code is publicly available at https://github.com/ndsclark/MSPANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
啊强完成签到 ,获得积分10
43秒前
浮游应助zqy采纳,获得10
1分钟前
要按期顺利毕业完成签到,获得积分10
1分钟前
1分钟前
2分钟前
Fishchips发布了新的文献求助10
2分钟前
DYB完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助zqy采纳,获得10
3分钟前
浮游应助cc采纳,获得10
4分钟前
YZChen完成签到,获得积分10
4分钟前
4分钟前
zqy完成签到,获得积分20
4分钟前
优雅雨柏完成签到,获得积分10
4分钟前
月军完成签到 ,获得积分10
5分钟前
玩命的糖豆完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
乐乐应助新xin采纳,获得30
5分钟前
Zert发布了新的文献求助10
5分钟前
6分钟前
cc发布了新的文献求助10
6分钟前
cc完成签到,获得积分20
6分钟前
6分钟前
6分钟前
头孢西丁完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
一盏壶完成签到,获得积分10
8分钟前
8分钟前
8分钟前
新xin发布了新的文献求助30
8分钟前
CipherSage应助Zert采纳,获得10
8分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346473
求助须知:如何正确求助?哪些是违规求助? 4481054
关于积分的说明 13947175
捐赠科研通 4378871
什么是DOI,文献DOI怎么找? 2406077
邀请新用户注册赠送积分活动 1398680
关于科研通互助平台的介绍 1371411