已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach

计算机科学 棱锥(几何) 判别式 人工智能 卷积神经网络 瓶颈 残余物 卷积(计算机科学) 架空(工程) 特征(语言学) 模式识别(心理学) 人工神经网络 算法 嵌入式系统 操作系统 光学 物理 哲学 语言学
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108261-108261 被引量:35
标识
DOI:10.1016/j.engappai.2024.108261
摘要

Attention mechanisms have gradually become necessary to enhance the representational power of convolutional neural networks (CNNs). Despite recent progress in attention mechanism research, some open problems still exist. Most existing methods ignore modeling multi-scale feature representations, structural information, and long-range channel dependencies, which are essential for delivering more discriminative attention maps. This study proposes a novel, low-overhead, high-performance attention mechanism with strong generalization ability for various networks and datasets. This mechanism is called Multi-Scale Spatial Pyramid Attention (MSPA) and can be used to solve the limitations of other attention methods. For the critical components of MSPA, we not only develop the Hierarchical-Phantom Convolution (HPC) module, which can extract multi-scale spatial information at a more granular level utilizing hierarchical residual-like connections, but also design the Spatial Pyramid Recalibration (SPR) module, which can integrate structural regularization and structural information in an adaptive combination mechanism, while employing the Softmax operation to build long-range channel dependencies. The proposed MSPA is a powerful tool that can be conveniently embedded into various CNNs as a plug-and-play component. Correspondingly, using MSPA to replace the 3 × 3 convolution in the bottleneck residual blocks of ResNets, we created a series of simple and efficient backbones named MSPANet, which naturally inherit the advantages of MSPA. Without bells and whistles, our method substantially outperforms other state-of-the-art counterparts in all evaluation metrics based on extensive experimental results from CIFAR-100 and ImageNet-1K image recognition. When applying MSPA to ResNet-50, our model achieves top-1 classification accuracy of 81.74% and 78.40% on the CIFAR-100 and ImageNet-1K benchmarks, exceeding the corresponding baselines by 3.95% and 2.27%, respectively. We also obtained promising performance improvements of 1.15% and 0.91% compared to the competitive EPSANet-50. In addition, empirical research results in autonomous driving engineering applications also demonstrate that our method can significantly improve the accuracy and real-time performance of image recognition with cheaper overhead. Our code is publicly available at https://github.com/ndsclark/MSPANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的海豚完成签到,获得积分10
3秒前
4秒前
耶格尔完成签到 ,获得积分10
4秒前
sj关闭了sj文献求助
7秒前
小琳完成签到,获得积分10
7秒前
知闲完成签到,获得积分10
7秒前
浮游应助yongon采纳,获得30
9秒前
9秒前
丸子鱼完成签到 ,获得积分10
10秒前
凶凶发布了新的文献求助10
10秒前
10秒前
ComeOn发布了新的文献求助10
12秒前
kook完成签到 ,获得积分10
13秒前
15秒前
脑洞疼应助爱听歌的亦玉采纳,获得30
15秒前
LuckyM完成签到 ,获得积分10
16秒前
victor发布了新的文献求助10
16秒前
18秒前
haixia发布了新的文献求助10
23秒前
彭于晏应助苏黎沫采纳,获得10
24秒前
深情安青应助小蜗采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得20
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
凶凶完成签到,获得积分10
25秒前
仰勒完成签到 ,获得积分10
26秒前
淡定成风完成签到,获得积分10
27秒前
吞吞完成签到 ,获得积分10
28秒前
riccixuu完成签到 ,获得积分10
28秒前
30秒前
风趣的小夏完成签到 ,获得积分10
30秒前
zsl完成签到 ,获得积分10
31秒前
tong完成签到 ,获得积分10
33秒前
jarenthar完成签到 ,获得积分10
33秒前
科研通AI6应助疯狂的天宇采纳,获得10
34秒前
徐志豪发布了新的文献求助10
36秒前
打打应助昨夜書采纳,获得10
37秒前
不想制造学术垃圾的垃圾完成签到 ,获得积分10
37秒前
科研通AI5应助朱志伟采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197813
求助须知:如何正确求助?哪些是违规求助? 4378999
关于积分的说明 13637390
捐赠科研通 4234829
什么是DOI,文献DOI怎么找? 2323003
邀请新用户注册赠送积分活动 1321071
关于科研通互助平台的介绍 1271854