Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach

计算机科学 棱锥(几何) 判别式 人工智能 卷积神经网络 瓶颈 残余物 卷积(计算机科学) 架空(工程) 特征(语言学) 模式识别(心理学) 人工神经网络 算法 嵌入式系统 操作系统 语言学 光学 物理 哲学
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108261-108261 被引量:3
标识
DOI:10.1016/j.engappai.2024.108261
摘要

Attention mechanisms have gradually become necessary to enhance the representational power of convolutional neural networks (CNNs). Despite recent progress in attention mechanism research, some open problems still exist. Most existing methods ignore modeling multi-scale feature representations, structural information, and long-range channel dependencies, which are essential for delivering more discriminative attention maps. This study proposes a novel, low-overhead, high-performance attention mechanism with strong generalization ability for various networks and datasets. This mechanism is called Multi-Scale Spatial Pyramid Attention (MSPA) and can be used to solve the limitations of other attention methods. For the critical components of MSPA, we not only develop the Hierarchical-Phantom Convolution (HPC) module, which can extract multi-scale spatial information at a more granular level utilizing hierarchical residual-like connections, but also design the Spatial Pyramid Recalibration (SPR) module, which can integrate structural regularization and structural information in an adaptive combination mechanism, while employing the Softmax operation to build long-range channel dependencies. The proposed MSPA is a powerful tool that can be conveniently embedded into various CNNs as a plug-and-play component. Correspondingly, using MSPA to replace the 3 × 3 convolution in the bottleneck residual blocks of ResNets, we created a series of simple and efficient backbones named MSPANet, which naturally inherit the advantages of MSPA. Without bells and whistles, our method substantially outperforms other state-of-the-art counterparts in all evaluation metrics based on extensive experimental results from CIFAR-100 and ImageNet-1K image recognition. When applying MSPA to ResNet-50, our model achieves top-1 classification accuracy of 81.74% and 78.40% on the CIFAR-100 and ImageNet-1K benchmarks, exceeding the corresponding baselines by 3.95% and 2.27%, respectively. We also obtained promising performance improvements of 1.15% and 0.91% compared to the competitive EPSANet-50. In addition, empirical research results in autonomous driving engineering applications also demonstrate that our method can significantly improve the accuracy and real-time performance of image recognition with cheaper overhead. Our code is publicly available at https://github.com/ndsclark/MSPANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OJL完成签到 ,获得积分10
1秒前
郑思榆完成签到 ,获得积分10
1秒前
wan完成签到 ,获得积分10
2秒前
cheney完成签到,获得积分10
3秒前
周周好运完成签到,获得积分10
3秒前
温言发布了新的文献求助20
5秒前
Rahul完成签到,获得积分10
5秒前
默默的豆芽完成签到,获得积分10
5秒前
wangyanwxy完成签到,获得积分10
6秒前
flymove完成签到,获得积分10
6秒前
科研通AI5应助平淡南霜采纳,获得10
8秒前
wanci应助小小爱吃百香果采纳,获得10
8秒前
9秒前
9秒前
9秒前
11秒前
我是站长才怪应助xg采纳,获得10
11秒前
decimalpoint完成签到 ,获得积分10
13秒前
Benliu发布了新的文献求助20
13秒前
13秒前
Carol完成签到,获得积分10
13秒前
sw98318发布了新的文献求助10
14秒前
wang1090完成签到,获得积分10
14秒前
奋斗的许婷2完成签到,获得积分10
14秒前
14秒前
15秒前
hll完成签到,获得积分20
15秒前
阳yang发布了新的文献求助10
15秒前
16秒前
wang1090发布了新的文献求助30
17秒前
呜呜呜呜完成签到,获得积分10
17秒前
17秒前
Riki发布了新的文献求助10
18秒前
88发布了新的文献求助10
18秒前
19秒前
充电宝应助zfy采纳,获得10
20秒前
sak完成签到,获得积分10
21秒前
Shuo Yang发布了新的文献求助20
21秒前
呜呜呜呜发布了新的文献求助10
21秒前
在水一方应助hhzz采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808