All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

计算机科学 协调 人工智能 联营 规范化(社会学) 医学影像学 标准化 DICOM 数据科学 模式 医学物理学 数据挖掘 医学 物理 社会学 人类学 声学 操作系统 社会科学
作者
Silvia Seoni,Alen Shahini,Kristen M. Meiburger,Francesco Marzola,Giulia Rotunno,U. Rajendra Acharya,Filippo Molinari,Massimo Salvi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:250: 108200-108200 被引量:10
标识
DOI:10.1016/j.cmpb.2024.108200
摘要

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013-2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42%), resampling (increasing the percentage of robust radiomics features from 59.5% to 89.25%), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42% in classification accuracy and 47% in segmentation Dice scores. Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann完成签到,获得积分10
1秒前
3秒前
明理如凡完成签到,获得积分20
3秒前
4秒前
蓝天发布了新的文献求助10
4秒前
FashionBoy应助luminious采纳,获得10
5秒前
5秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
共享精神应助乐乐采纳,获得10
9秒前
不想起昵称完成签到,获得积分10
9秒前
11秒前
11秒前
Lucas应助2182265539采纳,获得10
11秒前
易安发布了新的文献求助10
11秒前
半夜汽笛完成签到 ,获得积分10
12秒前
杨自强完成签到,获得积分10
13秒前
科研通AI2S应助感动的夏青采纳,获得10
13秒前
回穆完成签到 ,获得积分10
14秒前
14秒前
暴走乄发布了新的文献求助10
15秒前
汉堡包应助zhoujinzhao采纳,获得10
15秒前
小马甲应助sunshine采纳,获得10
16秒前
无极微光应助闫宣瑜采纳,获得20
17秒前
18秒前
Orange应助YK采纳,获得10
18秒前
加碘盐完成签到,获得积分10
19秒前
白枫完成签到 ,获得积分0
21秒前
量子星尘发布了新的文献求助10
21秒前
今后应助开放草莓采纳,获得10
21秒前
22秒前
24秒前
季然完成签到,获得积分10
24秒前
念念发布了新的文献求助10
25秒前
26秒前
26秒前
28秒前
ZRT完成签到 ,获得积分10
29秒前
乐乐发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750