All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

计算机科学 协调 人工智能 联营 规范化(社会学) 医学影像学 标准化 DICOM 数据科学 模式 医学物理学 数据挖掘 医学 物理 社会学 人类学 声学 操作系统 社会科学
作者
Silvia Seoni,Alen Shahini,Kristen M. Meiburger,Francesco Marzola,Giulia Rotunno,U. Rajendra Acharya,Filippo Molinari,Massimo Salvi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108200-108200 被引量:10
标识
DOI:10.1016/j.cmpb.2024.108200
摘要

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013-2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42%), resampling (increasing the percentage of robust radiomics features from 59.5% to 89.25%), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42% in classification accuracy and 47% in segmentation Dice scores. Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LS发布了新的文献求助20
1秒前
温柔柜子应助ceeray23采纳,获得30
1秒前
linghanlan完成签到,获得积分10
2秒前
feb发布了新的文献求助10
2秒前
陈牛逼完成签到 ,获得积分10
2秒前
子新发布了新的文献求助10
3秒前
酷波er应助谷蓝采纳,获得10
3秒前
金金完成签到,获得积分10
3秒前
领导范儿应助多情嘉懿采纳,获得10
4秒前
5秒前
丸橙发布了新的文献求助10
5秒前
传奇3应助wy采纳,获得10
5秒前
852应助炙热晓露采纳,获得10
5秒前
潮鸣完成签到 ,获得积分10
6秒前
啦啦啦完成签到,获得积分20
6秒前
gzh关闭了gzh文献求助
6秒前
6秒前
7秒前
8秒前
柯凌完成签到 ,获得积分20
8秒前
8秒前
9秒前
八九完成签到,获得积分20
9秒前
犹豫草莓完成签到,获得积分10
9秒前
mama完成签到 ,获得积分10
9秒前
Lucas应助yh采纳,获得10
10秒前
浮游应助子新采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
11秒前
海洋不快乐完成签到,获得积分10
12秒前
Jasper应助丸橙采纳,获得10
12秒前
12秒前
13秒前
木南发布了新的文献求助10
13秒前
13秒前
lcj1014发布了新的文献求助10
14秒前
14秒前
14秒前
nenoaowu应助pahuang采纳,获得30
16秒前
所所应助风中的奎采纳,获得10
17秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143861
求助须知:如何正确求助?哪些是违规求助? 4341664
关于积分的说明 13521235
捐赠科研通 4182119
什么是DOI,文献DOI怎么找? 2293295
邀请新用户注册赠送积分活动 1293823
关于科研通互助平台的介绍 1236563