All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

计算机科学 协调 人工智能 联营 规范化(社会学) 医学影像学 标准化 DICOM 数据科学 模式 医学物理学 数据挖掘 医学 物理 社会学 人类学 声学 操作系统 社会科学
作者
Silvia Seoni,Alen Shahini,Kristen M. Meiburger,Francesco Marzola,Giulia Rotunno,U. Rajendra Acharya,Filippo Molinari,Massimo Salvi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108200-108200 被引量:10
标识
DOI:10.1016/j.cmpb.2024.108200
摘要

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013-2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42%), resampling (increasing the percentage of robust radiomics features from 59.5% to 89.25%), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42% in classification accuracy and 47% in segmentation Dice scores. Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ssherry发布了新的文献求助10
刚刚
基一啊佳发布了新的文献求助10
刚刚
1秒前
科研通AI2S应助博弈春秋采纳,获得10
1秒前
Donby完成签到,获得积分10
4秒前
科研通AI2S应助沙漠西瓜皮采纳,获得10
4秒前
旺旺发布了新的文献求助10
5秒前
Sandwich发布了新的文献求助10
5秒前
基一啊佳完成签到,获得积分10
6秒前
斯文败类应助苏苏苏采纳,获得10
6秒前
7秒前
7秒前
默尧完成签到,获得积分10
8秒前
10秒前
11秒前
12秒前
12秒前
GGbond发布了新的文献求助10
13秒前
zzl完成签到,获得积分10
13秒前
ding应助整齐的雨采纳,获得10
14秒前
旺旺完成签到,获得积分20
14秒前
Tsui发布了新的文献求助10
15秒前
今后应助思维隋采纳,获得30
15秒前
16秒前
lw完成签到,获得积分10
16秒前
大大大完成签到,获得积分10
16秒前
无私香彤完成签到 ,获得积分10
17秒前
18秒前
20秒前
橙子发布了新的文献求助20
22秒前
ycsqz完成签到,获得积分10
22秒前
苏苏苏发布了新的文献求助10
23秒前
研友_LJGXgn完成签到,获得积分10
23秒前
25秒前
26秒前
背后孤晴完成签到,获得积分10
27秒前
苏苏苏完成签到,获得积分10
28秒前
zz偏不跑完成签到,获得积分10
28秒前
安详的囧完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999460
求助须知:如何正确求助?哪些是违规求助? 3538836
关于积分的说明 11275255
捐赠科研通 3277713
什么是DOI,文献DOI怎么找? 1807651
邀请新用户注册赠送积分活动 883983
科研通“疑难数据库(出版商)”最低求助积分说明 810111