All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

计算机科学 协调 人工智能 联营 规范化(社会学) 医学影像学 标准化 DICOM 数据科学 模式 医学物理学 数据挖掘 医学 物理 社会学 人类学 声学 操作系统 社会科学
作者
Silvia Seoni,Alen Shahini,Kristen M. Meiburger,Francesco Marzola,Giulia Rotunno,U. Rajendra Acharya,Filippo Molinari,Massimo Salvi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:250: 108200-108200 被引量:10
标识
DOI:10.1016/j.cmpb.2024.108200
摘要

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013-2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42%), resampling (increasing the percentage of robust radiomics features from 59.5% to 89.25%), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42% in classification accuracy and 47% in segmentation Dice scores. Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小猫完成签到 ,获得积分10
1秒前
影zi完成签到,获得积分10
1秒前
chendahuanhuan完成签到,获得积分10
1秒前
Twonej应助pkqaifd采纳,获得30
1秒前
wonderingria完成签到,获得积分10
1秒前
1秒前
凛冬完成签到,获得积分10
1秒前
科研狗完成签到,获得积分10
1秒前
2秒前
定海神金完成签到,获得积分10
2秒前
大模型应助shukq采纳,获得10
2秒前
思源应助shukq采纳,获得10
2秒前
小硕土川完成签到,获得积分10
2秒前
儒雅鞋子完成签到,获得积分10
2秒前
2秒前
我最爱摸鱼完成签到,获得积分10
3秒前
3秒前
活泼草莓完成签到 ,获得积分10
3秒前
aixuexi*完成签到,获得积分10
3秒前
LINHAI完成签到,获得积分10
3秒前
3秒前
老福贵儿应助黄上权采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
专注的明轩完成签到 ,获得积分10
4秒前
4秒前
高贵的迎蕾完成签到,获得积分10
4秒前
4秒前
wanci完成签到,获得积分0
4秒前
5秒前
大脚丫发布了新的文献求助10
5秒前
5秒前
龙共完成签到,获得积分10
6秒前
虚幻听安完成签到,获得积分10
7秒前
合适的海安完成签到,获得积分20
7秒前
开心的白昼完成签到,获得积分10
7秒前
mmmz发布了新的文献求助20
7秒前
8秒前
youyuguang发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698993
求助须知:如何正确求助?哪些是违规求助? 5128246
关于积分的说明 15223758
捐赠科研通 4853988
什么是DOI,文献DOI怎么找? 2604401
邀请新用户注册赠送积分活动 1555903
关于科研通互助平台的介绍 1514243