亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

计算机科学 协调 人工智能 联营 规范化(社会学) 医学影像学 标准化 DICOM 数据科学 模式 医学物理学 数据挖掘 医学 物理 社会学 人类学 声学 操作系统 社会科学
作者
Silvia Seoni,Alen Shahini,Kristen M. Meiburger,Francesco Marzola,Giulia Rotunno,U. Rajendra Acharya,Filippo Molinari,Massimo Salvi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:250: 108200-108200 被引量:10
标识
DOI:10.1016/j.cmpb.2024.108200
摘要

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013-2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42%), resampling (increasing the percentage of robust radiomics features from 59.5% to 89.25%), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42% in classification accuracy and 47% in segmentation Dice scores. Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好学习完成签到,获得积分10
2秒前
4秒前
5秒前
小哈完成签到 ,获得积分10
7秒前
从容映易完成签到,获得积分10
31秒前
39秒前
41秒前
传奇3应助甜甜的金鑫采纳,获得10
43秒前
andrele发布了新的文献求助10
44秒前
lzxbarry完成签到,获得积分0
48秒前
王酸菜完成签到 ,获得积分10
51秒前
臣粉完成签到 ,获得积分10
1分钟前
Owen应助jerseyxue采纳,获得10
1分钟前
小糖完成签到 ,获得积分10
1分钟前
等待的mango完成签到,获得积分10
1分钟前
joanna完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
jerseyxue发布了新的文献求助10
2分钟前
wubuking完成签到 ,获得积分10
2分钟前
2分钟前
成蹊发布了新的文献求助30
2分钟前
Leon发布了新的文献求助10
2分钟前
2分钟前
11发布了新的文献求助10
2分钟前
香蕉觅云应助zyp采纳,获得10
2分钟前
2分钟前
成蹊完成签到,获得积分20
2分钟前
2分钟前
wanwan完成签到,获得积分10
3分钟前
甜甜玫瑰应助hhj采纳,获得10
3分钟前
Kkk完成签到 ,获得积分10
3分钟前
ddd发布了新的文献求助40
3分钟前
3分钟前
JavedAli完成签到,获得积分10
3分钟前
hhj完成签到,获得积分20
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413361
求助须知:如何正确求助?哪些是违规求助? 3015651
关于积分的说明 8871610
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482234
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679944