清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

计算机科学 协调 人工智能 联营 规范化(社会学) 医学影像学 标准化 DICOM 数据科学 模式 医学物理学 数据挖掘 医学 物理 社会学 人类学 声学 操作系统 社会科学
作者
Silvia Seoni,Alen Shahini,Kristen M. Meiburger,Francesco Marzola,Giulia Rotunno,U. Rajendra Acharya,Filippo Molinari,Massimo Salvi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108200-108200 被引量:10
标识
DOI:10.1016/j.cmpb.2024.108200
摘要

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013-2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42%), resampling (increasing the percentage of robust radiomics features from 59.5% to 89.25%), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42% in classification accuracy and 47% in segmentation Dice scores. Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
荔枝发布了新的文献求助10
46秒前
丁老三完成签到 ,获得积分10
1分钟前
1分钟前
Jim发布了新的文献求助10
2分钟前
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
Unlisted发布了新的文献求助10
2分钟前
落寞的又菡完成签到,获得积分10
2分钟前
3分钟前
端庄洪纲完成签到 ,获得积分10
3分钟前
3分钟前
米修发布了新的文献求助10
3分钟前
4分钟前
米修完成签到,获得积分20
4分钟前
CodeCraft应助居家小可采纳,获得10
4分钟前
4分钟前
苗苗发布了新的文献求助10
4分钟前
5分钟前
苗苗完成签到 ,获得积分10
5分钟前
loathebm发布了新的文献求助10
5分钟前
NexusExplorer应助loathebm采纳,获得10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
5分钟前
5分钟前
居家小可发布了新的文献求助10
6分钟前
我睡觉的时候不困完成签到 ,获得积分10
6分钟前
居家小可完成签到,获得积分10
6分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
如歌完成签到,获得积分10
6分钟前
不羁之魂完成签到,获得积分10
7分钟前
7分钟前
7分钟前
飞快的孱发布了新的文献求助10
7分钟前
CYT完成签到,获得积分10
8分钟前
chenlc971125完成签到 ,获得积分10
9分钟前
科研通AI5应助义气的含烟采纳,获得10
9分钟前
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108