Development and calibration of large deformation-compliant six-axis force sensor

校准 变形(气象学) 变形监测 计算机科学 声学 材料科学 物理 复合材料 量子力学
作者
Xiaoming Huang,Zhongjun Yin,Mingge Li,Q Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085113-085113 被引量:1
标识
DOI:10.1088/1361-6501/ad41f8
摘要

Abstract Improving the measurement accuracy and minimising the coupling between directions are the keys to researching the compliant six-axis force sensors. The use of a six-axis force sensor to accurately monitor the ground reaction force and centre of pressure during human motion is of great significance in the fields of biomechanics and pathological gait diagnosis. Although complete force information can be obtained using a commercial six-axis force sensor, its high stiffness affects the natural gait and easily leads to human fatigue. A compliant six-axis force sensor based on a flexible optical waveguide is proposed, in which the force and torque of six dimensions are detected by reasonably arranging six modular sensing units, and the mechanical decoupling of some dimensions is realised in theory. For the interdimensional coupling and error caused by machining process factors, as well as the nonlinear relationship between the input and output of the proposed compliant six-axis force sensor, a DE-RBF decoupling algorithm is proposed to decouple the calibration data. Compared with the least squares method (LSM) and the radial basis function (RBF) neural network decoupling algorithm, the obtained type-I errors were reduced by 87.7629%, 43.6265%, respectively, and type-II errors by 35.3312%, 56.9162%, respectively. The decoupling result’s maximum type-I and type-II errors were reduced from 7.7125% and 2.7382% in LSM and 3.1029% and 2.8917% in RBF to 0.5916% and 0.9558%, respectively. The measurement accuracy of the compliant six-axis force sensor was significantly higher; however, the time effectiveness of the proposed DE-RBF decoupling algorithm was slightly lower than that of the RBF neural network by 2.47%. In conclusion, the decoupling accuracy and timeliness of the proposed DE-RBF decoupling algorithm can satisfy the requirements of compliant six-axis force sensors to monitor low-frequency biomechanical signals, such as human motion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是阮软不是懒懒完成签到,获得积分10
1秒前
2秒前
陈锦鲤完成签到 ,获得积分10
2秒前
2秒前
d.zhang完成签到,获得积分10
2秒前
形而发布了新的文献求助10
3秒前
淡定南琴完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
6秒前
6秒前
suzy发布了新的文献求助10
7秒前
彪壮的若男完成签到 ,获得积分10
7秒前
顾矜应助lll采纳,获得10
8秒前
9秒前
9秒前
pp若若gg完成签到,获得积分10
9秒前
Hello应助zou采纳,获得10
10秒前
我是萨比完成签到,获得积分10
10秒前
不会下文献完成签到,获得积分10
11秒前
栗子发布了新的文献求助30
11秒前
风轻萤发布了新的文献求助10
14秒前
科研通AI2S应助A拉拉拉采纳,获得10
14秒前
14秒前
Ginelle发布了新的文献求助10
15秒前
井一关注了科研通微信公众号
15秒前
天天好心覃完成签到 ,获得积分10
16秒前
自然的人杰完成签到,获得积分10
17秒前
如愿完成签到 ,获得积分0
18秒前
马二朵完成签到,获得积分10
18秒前
scoups完成签到,获得积分10
19秒前
19秒前
jy发布了新的文献求助10
21秒前
栗子完成签到,获得积分10
21秒前
22秒前
DY发布了新的文献求助10
23秒前
风轻萤完成签到,获得积分10
24秒前
hhhyyyy发布了新的文献求助50
24秒前
26秒前
orixero应助我是萨比采纳,获得10
26秒前
26秒前
好好发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012