摘要
Chapter 3 Framework Nucleic Acid-Based Nanomaterials: A Promising Vehicle for Small Molecular Cargos Yanjing Li, Yanjing Li Tianjin Medical University School and Hospital of Stomatology, Department of Prosthodontics, 12 Qixiangtai Road, Tianjin, 300070 PR ChinaSearch for more papers by this author Yanjing Li, Yanjing Li Tianjin Medical University School and Hospital of Stomatology, Department of Prosthodontics, 12 Qixiangtai Road, Tianjin, 300070 PR ChinaSearch for more papers by this author Book Editor(s):Yunfeng Lin, Yunfeng Lin Sichuan University, West China College of Stomatology State Key Laboratory of Oral Diseases, No. 14, 3rd Section of RenMin Nan Road, Chengdu, 610041 PR, ChinaSearch for more papers by this authorShaojingya Gao, Shaojingya Gao Sichuan University, West China College of Stomatology State Key Laboratory of Oral Diseases, No. 14, 3rd Section of RenMin Nan Road, Chengdu, 610041 PR, ChinaSearch for more papers by this author First published: 26 April 2024 https://doi.org/10.1002/9783527841912.ch3 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Framework nucleic acids (FNAs), which are a series of self-assembled DNA nanostructures, are highly versatile tools for engineering intelligent molecular delivery vehicles. Owing to their precise and controllable design and construction, excellent programmability and functionality, as well as favorable intercalation between DNA and small molecules, FNAs provide a promising approach for small molecule delivery. This review discusses the advantages, applications, and current challenges of FNAs for the delivery of small molecular cargos. First, the physicochemical and biological properties that make FNAs favorable for the transport of small molecules are introduced. Thereafter, the classification of loaded cargos and the mechanism of combination between small molecules and FNAs are summarized in detail, and recent research on FNA-based delivery systems and their applications is highlighted. Finally, the challenges and prospects of FNA nanocarriers are discussed to advance their exploitation and clinical adoption. References Seeman , N.C. ( 1982 ). Nucleic acid junctions and lattices . J. Theor. Biol. 99 ( 2 ): 237 – 247 . 10.1016/0022-5193(82)90002-9 CASPubMedWeb of Science®Google Scholar Winfree , E. , Liu , F. , Wenzler , L.A. , and Seeman , N.C. ( 1998 ). Design and self-assembly of two-dimensional DNA crystals . Nature 394 ( 6693 ): 539 – 544 . 10.1038/28998 CASPubMedWeb of Science®Google Scholar Yan , H. , Park , S.H. , Finkelstein , G. et al. ( 2003 ). DNA-templated self-assembly of protein arrays and highly conductive nanowires . Science 301 ( 5641 ): 1882 – 1884 . 10.1126/science.1089389 CASPubMedWeb of Science®Google Scholar Zheng , J. , Birktoft , J.J. , Chen , Y. et al. ( 2009 ). From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal . Nature 461 ( 7260 ): 74 – 77 . 10.1038/nature08274 CASPubMedWeb of Science®Google Scholar Goodman , R.P. , Schaap , I.A. , Tardin , C.F. et al. ( 2005 ). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication . Science 310 ( 5754 ): 1661 – 1665 . 10.1126/science.1120367 CASPubMedWeb of Science®Google Scholar Zhang , T. , Tian , T.R. , and Lin , Y.F. ( 2022 ). Functionalizing framework nucleic-acid-based nanostructures for biomedical application . Adv. Mater. Google Scholar Schüller , V.J. , Heidegger , S. , Sandholzer , N. et al. ( 2011 ). Cellular immunostimulation by CpG-sequence-coated DNA origami structures . ACS Nano 5 ( 12 ): 9696 – 9702 . 10.1021/nn203161y CASPubMedWeb of Science®Google Scholar Shen , X. , Jiang , Q. , Wang , J. et al. ( 2012 ). Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe . Chem. Commun. 48 ( 92 ): 11301 – 11303 . 10.1039/c2cc36185j CASPubMedWeb of Science®Google Scholar Rothemund , P.W. ( 2006 ). Folding DNA to create nanoscale shapes and patterns . Nature 440 ( 7082 ): 297 – 302 . 10.1038/nature04586 CASPubMedWeb of Science®Google Scholar Douglas , S.M. , Dietz , H. , Liedl , T. et al. ( 2009 ). Self-assembly of DNA into nanoscale three-dimensional shapes . Nature 459 ( 7245 ): 414 – 418 . 10.1038/nature08016 CASPubMedWeb of Science®Google Scholar Andersen , E.S. , Dong , M. , Nielsen , M.M. et al. ( 2009 ). Self-assembly of a nanoscale DNA box with a controllable lid . Nature 459 ( 7243 ): 73 – 76 . 10.1038/nature07971 CASPubMedWeb of Science®Google Scholar Benson , E. , Mohammed , A. , Gardell , J. et al. ( 2015 ). DNA rendering of polyhedral meshes at the nanoscale . Nature 523 ( 7561 ): 441 – 444 . 10.1038/nature14586 CASPubMedWeb of Science®Google Scholar Wei , B. , Dai , M. , and Yin , P. ( 2012 ). Complex shapes self-assembled from single-stranded DNA tiles . Nature 485 ( 7400 ): 623 – 626 . 10.1038/nature11075 CASPubMedWeb of Science®Google Scholar Tikhomirov , G. , Petersen , P. , and Qian , L. ( 2017 ). Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns . Nature 552 ( 7683 ): 67 – 71 . 10.1038/nature24655 CASPubMedWeb of Science®Google Scholar Douglas , S.M. , Marblestone , A.H. , Teerapittayanon , S. et al. ( 2009 ). Rapid prototyping of 3D DNA-origami shapes with caDNAno . Nucleic Acids Res. 37 ( 15 ): 5001 – 5006 . 10.1093/nar/gkp436 CASPubMedWeb of Science®Google Scholar Gustafson , R. and Källmén , H. ( 1989 ). Alcohol effects on cognitive and personality style in women with special reference to primary and secondary process . Alcohol.: Clin. Exp. Res. 13 ( 5 ): 644 – 648 . 10.1111/j.1530-0277.1989.tb00397.x CASWeb of Science®Google Scholar Liu , Z. , Li , Y. , Tian , C. , and Mao , C. ( 2013 ). A smart DNA tetrahedron that isothermally assembles or dissociates in response to the solution pH value changes . Biomacromolecules 14 ( 6 ): 1711 – 1714 . 10.1021/bm400426f CASPubMedWeb of Science®Google Scholar Ge , Z. , Gu , H. , Li , Q. , and Fan , C. ( 2018 ). Concept and development of framework nucleic acids . JACS 140 ( 51 ): 17808 – 17819 . 10.1021/jacs.8b10529 CASPubMedWeb of Science®Google Scholar Veneziano , R. , Ratanalert , S. , Zhang , K. et al. ( 2016 ). Designer nanoscale DNA assemblies programmed from the top down . Science 352 ( 6293 ): 1534 . 10.1126/science.aaf4388 CASPubMedWeb of Science®Google Scholar Mokhtarzadeh , A. , Vahidnezhad , H. , Youssefian , L. et al. ( 2019 ). Applications of spherical nucleic acid nanoparticles as delivery systems . Trends Mol. Med. 25 ( 12 ): 1066 – 1079 . 10.1016/j.molmed.2019.08.012 CASPubMedWeb of Science®Google Scholar Kollmann , F. , Ramakrishnan , S. , Shen , B. et al. ( 2018 ). Superstructure-dependent loading of DNA origami nanostructures with a groove-binding drug . ACS Omega 3 ( 8 ): 9441 – 9448 . 10.1021/acsomega.8b00934 CASGoogle Scholar Ramakrishnan , S. , Ijäs , H. , Linko , V. , and Keller , A. ( 2018 ). Structural stability of DNA origami nanostructures under application-specific conditions . Comput. Struct. Biotechnol. J. 16 : 342 – 349 . 10.1016/j.csbj.2018.09.002 CASPubMedWeb of Science®Google Scholar Castro , C.E. , Kilchherr , F. , Kim , D.N. et al. ( 2011 ). A primer to scaffolded DNA origami . Nat. Methods 8 ( 3 ): 221 – 229 . 10.1038/nmeth.1570 CASPubMedWeb of Science®Google Scholar Perrault , S.D. and Shih , W.M. ( 2014 ). Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability . ACS Nano 8 ( 5 ): 5132 – 5140 . 10.1021/nn5011914 CASPubMedWeb of Science®Google Scholar Mikkilä , J. , Eskelinen , A.P. , Niemelä , E.H. et al. ( 2014 ). Virus-encapsulated DNA origami nanostructures for cellular delivery . Nano Lett. 14 ( 4 ): 2196 – 2200 . 10.1021/nl500677j CASPubMedWeb of Science®Google Scholar Ahmadi , Y. , De Llano , E. , and Barišić , I. ( 2018 ). (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures . Nanoscale 10 ( 16 ): 7494 – 7504 . 10.1039/C7NR09461B CASPubMedGoogle Scholar Zeng , Y. , Liu , J. , Yang , S. et al. ( 2018 ). Time-lapse live cell imaging to monitor doxorubicin release from DNA origami nanostructures . J. Mater. Chem. B 6 ( 11 ): 1605 – 1612 . 10.1039/C7TB03223D CASGoogle Scholar Shi , S. , Li , Y. , Zhang , T. et al. ( 2021 ). Biological effect of differently sized tetrahedral framework nucleic acids: endocytosis, proliferation, migration, and biodistribution . ACS Appl. Mater. Interfaces 13 ( 48 ): 57067 – 57074 . 10.1021/acsami.1c20657 CASPubMedWeb of Science®Google Scholar Tian , T. , Zhang , C. , Li , J. et al. ( 2021 ). Proteomic exploration of endocytosis of framework nucleic acids . Small 17 ( 23 ): e2100837 . 10.1002/smll.202100837 CASPubMedWeb of Science®Google Scholar Liang , L. , Li , J. , Li , Q. et al. ( 2014 ). Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells . Angew. Chem. 53 ( 30 ): 7745 – 7750 . 10.1002/anie.201403236 CASPubMedWeb of Science®Google Scholar Tian , T. , Zhang , T. , Zhou , T. et al. ( 2017 ). Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle . Nanoscale 9 ( 46 ): 18402 – 18412 . 10.1039/C7NR07130B CASPubMedWeb of Science®Google Scholar Li , Q. , Zhao , D. , Shao , X. et al. ( 2017 ). Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery . ACS Appl. Mater. Interfaces 9 ( 42 ): 36695 – 36701 . 10.1021/acsami.7b13328 CASPubMedWeb of Science®Google Scholar Wiraja , C. , Zhu , Y. , Lio , D.C.S. et al. ( 2019 ). Framework nucleic acids as programmable carrier for transdermal drug delivery . Nat. Commun. 10 ( 1 ): 1147 . 10.1038/s41467-019-09029-9 PubMedGoogle Scholar Hasanzadeh , M. and Shadjou , N. ( 2016 ). Pharmacogenomic study using bio- and nanobioelectrochemistry: drug-DNA interaction . Mater. Sci. Eng. C 61 : 1002 – 1017 . 10.1016/j.msec.2015.12.020 CASPubMedWeb of Science®Google Scholar Ijäs , H. , Shen , B. , Heuer-Jungemann , A. et al. ( 2021 ). Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release . Nucleic Acids Res. 49 ( 6 ): 3048 – 3062 . 10.1093/nar/gkab097 CASPubMedWeb of Science®Google Scholar Zhang , Q. , Jiang , Q. , Li , N. et al. ( 2014 ). DNA origami as an in vivo drug delivery vehicle for cancer therapy . ACS Nano 8 ( 7 ): 6633 – 6643 . 10.1021/nn502058j CASPubMedWeb of Science®Google Scholar Zhao , Y.X. , Shaw , A. , Zeng , X. et al. ( 2012 ). DNA origami delivery system for cancer therapy with tunable release properties . ACS Nano 6 ( 10 ): 8684 – 8691 . 10.1021/nn3022662 CASPubMedWeb of Science®Google Scholar Ge , Z. , Guo , L. , Wu , G. et al. ( 2020 ). DNA origami-enabled engineering of ligand-drug conjugates for targeted drug delivery . Small 16 ( 16 ): e1904857 . 10.1002/smll.201904857 CASWeb of Science®Google Scholar Sun , P. , Zhang , N. , Tang , Y. et al. ( 2017 ). SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer . Int. J. Nanomed. 12 : 2657 – 2672 . 10.2147/IJN.S132929 CASPubMedWeb of Science®Google Scholar Liu , M. , Ma , W. , Zhao , D. et al. ( 2021 ). Enhanced penetrability of a tetrahedral framework nucleic acid by modification with iRGD for DOX-targeted delivery to triple-negative breast cancer . ACS Appl. Mater. Interfaces 13 ( 22 ): 25825 – 25835 . 10.1021/acsami.1c07297 CASPubMedWeb of Science®Google Scholar Xia , Z. , Wang , P. , Liu , X. et al. ( 2016 ). Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery . Biochemistry 55 ( 9 ): 1326 – 1331 . 10.1021/acs.biochem.5b01181 CASPubMedWeb of Science®Google Scholar Shi , S. , Fu , W. , Lin , S. et al. ( 2019 ). Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier . Nanomed. Nanotechnol. Biol. Med. 21 : 102061 . 10.1016/j.nano.2019.102061 CASPubMedWeb of Science®Google Scholar Xie , X. , Shao , X. , Ma , W. et al. ( 2018 ). Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures . Nanoscale 10 ( 12 ): 5457 – 5465 . 10.1039/C7NR09692E CASPubMedWeb of Science®Google Scholar Zhong , Y.F. , Cheng , J. , Liu , Y. et al. ( 2020 ). DNA nanostructures as Pt(IV) prodrug delivery systems to combat chemoresistance . Small 16 ( 38 ): e2003646 . 10.1002/smll.202003646 Google Scholar Jorge , A.F. , Aviñó , A. , Pais , A. et al. ( 2018 ). DNA-based nanoscaffolds as vehicles for 5-fluoro-2′-deoxyuridine oligomers in colorectal cancer therapy . Nanoscale 10 ( 15 ): 7238 – 7249 . 10.1039/C7NR08442K CASPubMedWeb of Science®Google Scholar Ma , W. , Yang , Y. , Zhu , J. et al. ( 2022 ). Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer . Adv. Mater. e2109609 . Google Scholar Zhuang , X. , Ma , X. , Xue , X. et al. ( 2016 ). A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy . ACS Nano 10 ( 3 ): 3486 – 3495 . 10.1021/acsnano.5b07671 CASPubMedWeb of Science®Google Scholar Shaukat , A. , Anaya-Plaza , E. , Julin , S. et al. ( 2020 ). Phthalocyanine-DNA origami complexes with enhanced stability and optical properties . Chem. Commun. 56 ( 53 ): 7341 – 7344 . 10.1039/D0CC01916J CASGoogle Scholar Kim , K.R. , Bang , D. , and Ahn , D.R. ( 2016 ). Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy . Biomater. Sci. 4 ( 4 ): 605 – 609 . 10.1039/C5BM00467E CASPubMedGoogle Scholar Wright , G.D. ( 2016 ). Antibiotic adjuvants: rescuing antibiotics from resistance . Trends Microbiol. 24 ( 11 ): 862 – 871 . 10.1016/j.tim.2016.06.009 CASPubMedWeb of Science®Google Scholar Bhattacharya , P. , Mukherjee , S. , and Mandal , S.M. ( 2020 ). Fluoroquinolone antibiotics show genotoxic effect through DNA-binding and oxidative damage . Spectrochim. Acta, Part A 227 : 117634 . 10.1016/j.saa.2019.117634 CASPubMedWeb of Science®Google Scholar Halley , P.D. , Lucas , C.R. , McWilliams , E.M. et al. ( 2016 ). Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model . Small 12 ( 3 ): 308 – 320 . 10.1002/smll.201502118 CASPubMedWeb of Science®Google Scholar Sun , Y. , Li , S. , Zhang , Y. et al. ( 2020 ). Tetrahedral framework nucleic acids loading ampicillin improve the drug susceptibility against methicillin-resistant Staphylococcus aureus . ACS Appl. Mater. Interfaces 12 ( 33 ): 36957 – 36966 . 10.1021/acsami.0c11249 CASPubMedWeb of Science®Google Scholar Sun , Y. , Liu , Y. , Zhang , B. et al. ( 2021 ). Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli ( E. coli ) . Bioact. Mater. 6 ( 8 ): 2281 – 2290 . 10.1016/j.bioactmat.2020.12.027 CASPubMedGoogle Scholar Mela , I. , Vallejo-Ramirez , P.P. , Makarchuk , S. et al. ( 2020 ). DNA nanostructures for targeted antimicrobial delivery . Angew. Chem. 59 ( 31 ): 12698 – 12702 . 10.1002/anie.202002740 CASPubMedWeb of Science®Google Scholar Pastor , R.F. , Restani , P. , Di Lorenzo , C. et al. ( 2019 ). Resveratrol, human health and winemaking perspectives . Crit. Rev. Food Sci. Nutr. 59 ( 8 ): 1237 – 1255 . 10.1080/10408398.2017.1400517 CASPubMedWeb of Science®Google Scholar Xu , M. , Pirtskhalava , T. , Farr , J.N. et al. ( 2018 ). Senolytics improve physical function and increase lifespan in old age . Nat. Med. 24 ( 8 ): 1246 – 1256 . 10.1038/s41591-018-0092-9 CASPubMedWeb of Science®Google Scholar Srinivasan , K. ( 2016 ). Biological activities of red pepper ( Capsicum annuum ) and its pungent principle capsaicin: a review . Crit. Rev. Food Sci. Nutr. 56 ( 9 ): 1488 – 1500 . 10.1080/10408398.2013.772090 CASPubMedWeb of Science®Google Scholar Ma , N. , Zhang , Z. , Liao , F. et al. ( 2020 ). The birth of artemisinin . Pharmacol. Ther. 216 : 107658 . 10.1016/j.pharmthera.2020.107658 CASPubMedWeb of Science®Google Scholar Hussain , I. , Fatima , S. , Siddiqui , S. et al. ( 2021 ). Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: insights from multi-spectroscopic, thermodynamic and bioinformatics approaches . Spectrochim. Acta, Part A 260 : 119952 . 10.1016/j.saa.2021.119952 Google Scholar Platella , C. , Mazzini , S. , Napolitano , E. et al. ( 2021 ). Plant-derived stilbenoids as DNA-binding agents: from monomers to dimers . Chemistry 27 ( 34 ): 8832 – 8845 . 10.1002/chem.202101229 CASPubMedWeb of Science®Google Scholar Sirong , S. , Yang , C. , Taoran , T. et al. ( 2020 ). Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis . Bone Res. 8 : 6 . 10.1038/s41413-019-0077-4 PubMedWeb of Science®Google Scholar Zhang , M. , Zhang , X. , Tian , T. et al. ( 2022 ). Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis . Bioact. Mater. 8 : 368 – 380 . 10.1016/j.bioactmat.2021.06.003 CASPubMedWeb of Science®Google Scholar Li , Y. , Gao , S. , Shi , S. et al. ( 2021 ). Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity . Nano Micro Lett. 13 ( 1 ): 86 . 10.1007/s40820-021-00614-6 CASPubMedWeb of Science®Google Scholar Cui , W.T. , Yang , X. , Chen , X.Y. et al. ( 2021 ). Treating LRRK2-related Parkinson's disease by inhibiting the mTOR signaling pathway to restore autophagy . Adv. Funct. Mater. 31 ( 38 ): 13 . 10.1002/adfm.202105152 Google Scholar Xu , T. , Yu , S. , Sun , Y. et al. ( 2021 ). DNA origami frameworks enabled self-protective siRNA delivery for dual enhancement of chemo-photothermal combination therapy . Small 17 ( 46 ): e2101780 . 10.1002/smll.202101780 Google Scholar Bhatia , D. , Arumugam , S. , Nasilowski , M. et al. ( 2016 ). Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways . Nat. Nanotechnol. 11 ( 12 ): 1112 – 1119 . 10.1038/nnano.2016.150 CASPubMedWeb of Science®Google Scholar Leamon , C.P. and Reddy , J.A. ( 2004 ). Folate-targeted chemotherapy . Adv. Drug Delivery Rev. 56 ( 8 ): 1127 – 1141 . 10.1016/j.addr.2004.01.008 CASPubMedWeb of Science®Google Scholar Ko , S. , Liu , H. , Chen , Y. , and Mao , C. ( 2008 ). DNA nanotubes as combinatorial vehicles for cellular delivery . Biomacromolecules 9 ( 11 ): 3039 – 3043 . 10.1021/bm800479e CASPubMedWeb of Science®Google Scholar Pal , S. and Rakshit , T. ( 2021 ). Folate-functionalized DNA origami for targeted delivery of doxorubicin to triple-negative breast cancer . Front. Chem. 9 : 721105 . 10.3389/fchem.2021.721105 Google Scholar Jiang , D. , Sun , Y. , Li , J. et al. ( 2016 ). Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging . ACS Appl. Mater. Interfaces 8 ( 7 ): 4378 – 4384 . 10.1021/acsami.5b10792 CASPubMedGoogle Scholar Raniolo , S. , Vindigni , G. , Ottaviani , A. et al. ( 2018 ). Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages . Nanomed. Nanotechnol. Biol. Med. 14 ( 4 ): 1181 – 1190 . 10.1016/j.nano.2018.02.002 CASPubMedWeb of Science®Google Scholar Bu , Y.Z. , Xu , J.R. , Luo , Q. et al. ( 2020 ). A precise nanostructure of folate-overhung mitoxantrone DNA tetrahedron for targeted capture leukemia . Nanomaterials 10 ( 5 ). 10.3390/nano10050951 Google Scholar Zhu , G. and Chen , X. ( 2018 ). Aptamer-based targeted therapy . Adv. Drug Delivery Rev. 134 : 65 – 78 . 10.1016/j.addr.2018.08.005 CASPubMedWeb of Science®Google Scholar Wu , L. , Wang , Y. , Xu , X. et al. ( 2021 ). Aptamer-based detection of circulating targets for precision medicine . Chem. Rev. 121 ( 19 ): 12035 – 12105 . 10.1021/acs.chemrev.0c01140 CASPubMedWeb of Science®Google Scholar Tong , X. , Ga , L. , Ai , J. , and Wang , Y. ( 2022 ). Progress in cancer drug delivery based on AS1411 oriented nanomaterials . J. Nanobiotechnol. 20 ( 1 ): 57 . 10.1186/s12951-022-01240-z CASGoogle Scholar Li , H. , Liu , J. , and Gu , H. ( 2019 ). Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot . J. Cell. Mol. Med. 23 ( 3 ): 2248 – 2250 . 10.1111/jcmm.14127 CASPubMedWeb of Science®Google Scholar Chang , M. , Yang , C.S. , and Huang , D.M. ( 2011 ). Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy . ACS Nano 5 ( 8 ): 6156 – 6163 . 10.1021/nn200693a CASPubMedWeb of Science®Google Scholar Douglas , S.M. , Bachelet , I. , and Church , G.M. ( 2012 ). A logic-gated nanorobot for targeted transport of molecular payloads . Science 335 ( 6070 ): 831 – 834 . 10.1126/science.1214081 CASPubMedWeb of Science®Google Scholar Liang , H. , Shi , Y. , Kou , Z. et al. ( 2015 ). Inhibition of BACE1 activity by a DNA aptamer in an Alzheimer's disease cell model . PLoS One 10 ( 10 ): e0140733 . 10.1371/journal.pone.0140733 Google Scholar Ji , M.L. , Jiang , H. , Wu , F. et al. ( 2020 ). Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development . Ann. Rheum. Dis. Google Scholar Luo , Z.W. , Li , F.X. , Liu , Y.W. et al. ( 2019 ). Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration . Nanoscale 11 ( 43 ): 20884 – 20892 . 10.1039/C9NR02791B CASPubMedWeb of Science®Google Scholar Tian , T. , Li , J. , Xie , C. et al. ( 2018 ). Targeted imaging of brain tumors with a framework nucleic acid probe . ACS Appl. Mater. Interfaces 10 ( 4 ): 3414 – 3420 . 10.1021/acsami.7b17927 CASPubMedGoogle Scholar Tian , T. , Zhang , H.X. , He , C.P. et al. ( 2018 ). Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy . Biomaterials 150 : 137 – 149 . 10.1016/j.biomaterials.2017.10.012 CASPubMedWeb of Science®Google Scholar Bari , E. , Serra , M. , Paolillo , M. et al. ( 2021 ). Silk fibroin nanoparticle functionalization with Arg-Gly-Asp cyclopentapeptide promotes active targeting for tumor site-specific delivery . Cancers 13 ( 5 ). 10.3390/cancers13051185 Google Scholar Zhang , Y. , Pan , V. , Li , X. et al. ( 2019 ). Dynamic DNA structures . Small 15 ( 26 ): e1900228 . 10.1002/smll.201900228 Google Scholar Li , J. , Zhang , Y. , Sun , J. et al. ( 2021 ). SiRNA-templated 3D framework nucleic acids for chemotactic recognition, and programmable and visualized precise delivery for synergistic cancer therapy . Chem. Sci. 12 ( 46 ): 15353 – 15361 . 10.1039/D1SC04249A CASGoogle Scholar Zhang , P. , Ouyang , Y. , Sohn , Y.S. et al. ( 2021 ). pH- and miRNA-responsive DNA-tetrahedra/metal-organic framework conjugates: functional sense-and-treat carriers . ACS Nano 15 ( 4 ): 6645 – 6657 . 10.1021/acsnano.0c09996 CASPubMedGoogle Scholar Juul , S. , Iacovelli , F. , Falconi , M. et al. ( 2013 ). Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage . ACS Nano 7 ( 11 ): 9724 – 9734 . 10.1021/nn4030543 CASPubMedGoogle Scholar Franch , O. , Iacovelli , F. , Falconi , M. et al. ( 2016 ). DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family . Nanoscale 8 ( 27 ): 13333 – 13341 . 10.1039/C6NR01806H CASGoogle Scholar Jiang , Q. , Song , C. , Nangreave , J. et al. ( 2012 ). DNA origami as a carrier for circumvention of drug resistance . JACS 134 ( 32 ): 13396 – 13403 . 10.1021/ja304263n CASPubMedWeb of Science®Google Scholar Kim , K.R. , Kim , D.R. , Lee , T. et al. ( 2013 ). Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells . Chem. Commun. 49 ( 20 ): 2010 – 2012 . 10.1039/c3cc38693g CASPubMedWeb of Science®Google Scholar Liu , J. , Song , L. , Liu , S. et al. ( 2018 ). A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors . Angew. Chem. 57 ( 47 ): 15486 – 15490 . 10.1002/anie.201809452 CASPubMedWeb of Science®Google Scholar Pan , Q. , Nie , C. , Hu , Y. et al. ( 2020 ). Aptamer-functionalized DNA origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in drug-resistant cancer cells . ACS Appl. Mater. Interfaces 12 ( 1 ): 400 – 409 . 10.1021/acsami.9b20707 CASPubMedWeb of Science®Google Scholar Wang , Z. , Song , L. , Liu , Q. et al. ( 2021 ). A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy . Angew. Chem. 60 ( 5 ): 2594 – 2598 . 10.1002/anie.202009842 CASPubMedWeb of Science®Google Scholar Zhu , J. , Yang , Y. , Ma , W. et al. ( 2022 ). Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane . Nano Lett. 22 ( 6 ): 2381 – 2390 . 10.1021/acs.nanolett.2c00025 CASPubMedWeb of Science®Google Scholar Gao , Y. , Chen , X. , Tian , T. et al. ( 2022 ). A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery . Adv. Mater. 34 : e2201731 . Google Scholar Zhang , B.W. , Tian , T.R. , Xiao , D.X. et al. ( 2022 ). Facilitating in situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction probe . Adv. Funct. Mater. 32 ( 16 ): 11 . 10.1002/adfm.202109728 Google Scholar Wang , Y. , Li , Y. , Gao , S. et al. ( 2022 ). Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice . Nano Lett. 22 ( 4 ): 1759 – 1768 . 10.1021/acs.nanolett.1c05003 CASPubMedWeb of Science®Google Scholar Zhou , M. , Zhang , T. , Zhang , B. et al. ( 2021 ). A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke . ACS Nano 16 : 1456 – 1470 . 10.1021/acsnano.1c09626 PubMedWeb of Science®Google Scholar Maezawa , T. , Ohtsuki , S. , Hidaka , K. et al. ( 2020 ). DNA density-dependent uptake of DNA origami-based two-or three-dimensional nanostructures by immune cells . Nanoscale 12 ( 27 ): 14818 – 14824 . 10.1039/D0NR02361B CASGoogle Scholar Tseng , C.Y. , Wang , W.X. , Douglas , T.R. , and Chou , L.Y.T. ( 2022 ). Engineering DNA nanostructures to manipulate immune receptor signaling and immune cell fates . Adv. Healthcare Mater. 11 ( 4 ): e2101844 . 10.1002/adhm.202101844 Google Scholar Yang , G. , Koo , J.E. , Lee , H.E. et al. ( 2019 ). Immunostimulatory activity of Y-shaped DNA nanostructures mediated through the activation of TLR9 . Biomed. Pharmacother. 112 : 108657 . 10.1016/j.biopha.2019.108657 Google Scholar Li , J. , Yao , Y. , Wang , Y. et al. ( 2022 ). Modulation of the crosstalk between Schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on multifunctional tetrahedral framework nucleic acids system . Adv. Mater. 34 ( 46 ): 2202513 . Google Scholar Qin , H. , Zhao , A. , and Fu , X. ( 2017 ). Small molecules for reprogramming and transdifferentiation . Cell. Mol. Life Sci. 74 ( 19 ): 3553 – 3575 . 10.1007/s00018-017-2586-x CASPubMedWeb of Science®Google Scholar Li , J. , Lai , Y.X. , Li , M.X. et al. ( 2022 ). Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold . Chem. Eng. J. 435 : 13 . Google Scholar Nucleic Acid‐Based Nanomaterials: Stabilities and Applications ReferencesRelatedInformation