Drought-induced circular RNAs in maize roots: Separating signal from noise

噪音(视频) 扎梅斯 信号(编程语言) 生物 农学 计算机科学 图像(数学) 人工智能 程序设计语言
作者
Jie Xu,Qi Wang,Xin Tang,Xiaoju Feng,Xiaoyue Zhang,Tianhong Liu,Fengkai Wu,Qingjun Wang,Xuanjun Feng,Qi Tang,Damon Lisch,Yanli Lu
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:196 (1): 352-367 被引量:4
标识
DOI:10.1093/plphys/kiae229
摘要

Abstract Circular RNAs (circRNAs) play an important role in diverse biological processes; however, their origin and functions, especially in plants, remain largely unclear. Here, we used 2 maize (Zea mays) inbred lines, as well as 14 of their derivative recombination inbred lines with different drought sensitivity, to systematically characterize 8,790 circRNAs in maize roots under well-watered (WW) and water-stress (WS) conditions. We found that a diverse set of circRNAs expressed at significantly higher levels under WS. Enhanced expression of circRNAs was associated with longer flanking introns and an enrichment of long interspersed nuclear element retrotransposable elements. The epigenetic marks found at the back-splicing junctions of circRNA-producing genes were markedly different from canonical splicing, characterized by increased levels of H3K36me3/H3K4me1, as well as decreased levels of H3K9Ac/H3K27Ac. We found that genes expressing circRNAs are subject to relaxed selection. The significant enrichment of trait-associated sites along their genic regions suggested that genes giving rise to circRNAs were associated with plant survival rate under drought stress, implying that circRNAs play roles in plant drought responses. Furthermore, we found that overexpression of circMED16, one of the drought-responsive circRNAs, enhances drought tolerance in Arabidopsis (Arabidopsis thaliana). Our results provide a framework for understanding the intricate interplay of epigenetic modifications and how they contribute to the fine-tuning of circRNA expression under drought stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助认真的一刀采纳,获得10
刚刚
1秒前
1秒前
甲基正离子完成签到,获得积分10
2秒前
hzl完成签到,获得积分10
2秒前
Lam完成签到,获得积分10
2秒前
大白发布了新的文献求助10
2秒前
2秒前
李爱国应助Hu采纳,获得10
3秒前
3秒前
小欧医生完成签到,获得积分10
3秒前
4秒前
4秒前
老肥完成签到,获得积分10
5秒前
易安发布了新的文献求助10
5秒前
洋洋洋完成签到,获得积分10
5秒前
5秒前
冷傲迎梦发布了新的文献求助10
6秒前
6秒前
Agernon应助晓军采纳,获得10
6秒前
小夭发布了新的文献求助10
7秒前
无聊的翠芙完成签到,获得积分10
7秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
wjj发布了新的文献求助10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
彭于晏应助鱼与树采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
xiuxiu_27发布了新的文献求助10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678